<u>Closing the gap between small and smaller: Towards a framework to analyse nano- and microplastics</u> <u>in aqueous environmental samples</u>

Svenja M. Mintenig ^{a,b}, Patrick S. Bäuerlein ^b, Albert A. Koelmans ^{c,d}, Stefan C. Dekker ^{a,e}, Annemarie P. van Wezel ^{a,b}

- ^a Copernicus Institute of Sustainable Development, Utrecht University, The Netherlands.
- ^b KWR Watercycle Research Institute, Nieuwegein, The Netherlands.
- ^c Aquatic Ecology and Water Quality Management Group, Wageningen University, The Netherlands.
- ^d Wageningen Marine Research, Ijmuiden, The Netherlands.
- ^e Faculty of Management, Science and Technology, Open University, Heerlen, The Netherlands

Supporting Information

Figure S 1: Scheme of combined techniques to sample and analyse nano- and microplastics.

Figure S 2: Schematic presentation of the Hemoflow crossflow ultrafiltration. 1 = water inflow, 2 = water meter, 3 = tank with float valve, 4 = pump, 5 = Hemoflow filter, 6 = permeate, 7 = pressure gauge, 8 = concentrate, circulation back into (3) tank (Source: Veenendaal and Brouwer-Hanzens ¹).

	Tested Settings	Applied Settings		
	(membrane & carrier liquid)			
Membrane	Reg. cellulose (RC) 10 kDa	RC		
	Polyethersulfone (PES) 10 kDa	I		
Carrier liquid	Milli-Q 0.01% SDS			
	0.01% SDS			
	0.01% TWEEN			
Spacer thickness	250 μm	250 μm		
Detector flow	1.0 ml min ⁻¹	1.0 ml min ⁻¹		
Split flow	0 ml min ⁻¹	0 ml min ⁻¹		
Cross flow	1.5 ml min ⁻¹	1 ml min ⁻¹		
	(0-11 min)	(0-8 min)		
	1.5-0 ml min ⁻¹	1-0 ml min ⁻¹		
	(11-50 min, exp. 0.2)	(8-28 min, exp. 0.2)		
	0 ml ml min ⁻¹	0 ml min ⁻¹		
	(50-65 min)	(28-33 min)		
Focusing flow	2.3 ml min ⁻¹	1.8 ml min ⁻¹		
Injection flow	0.2 ml min ⁻¹	0.2 ml min ⁻¹		
Injection time	6 min	4 min		
Injection volume	30 μl (monodispersed) 50 μl			
	(10 μl PS polydispersion)			

Table S 1: Settings used at the AF4. For the separation of a NP mixture different crossflows were tested.

Table S 2: Settings to run the pyrolysis of the samples.

General timing:	
Clean time	20.0 s
Clean time #2	60.0 s
Delay time	0.0 min
Equilibration time	20.0 s
Standby Temperature	
Head temperature	150.0 °C
Offset AS	50.0 °C
Default Parameters	
Temperature	150.0 °C
Pyro Time	10.0 s
Table	single
Pyrolysis Cup	560 °C

Table S 3: Settings to run the GC-MS.

Oven		
Initial Temperature	40 °C	
Initial Time	4.00 min	
Number of Ramps	2	
Rate #1	4.0 °C/min	
Final Temperature #1	230 °C	
Hold Time #1	0.00 min	
Rate #2	20.0 °C/min	
Final Temperature #2	325 °C	
Hold Time #2	5.00 min	
Maximum Temperature	350 °C	
Prep Run Timeout	10.00 min	
Equilibration Time	0.50 min	
Inlet		
Mode	split	
Base Temperature	200 °C	
Split Flow	40 ml/min	
Split ratio	10	
Carrier		
Mode	Constant flow	
Initial Value	4.00 ml/min	
Detector		
Mode	Full scan	
Mass Range	50 – 1000 amu	
Time Range	0 – 59 min	
Peak Format	Centriod	
Scan Time	0.40 s	
Multiplier	600 V	
Ionisation Mode	EI+	
Source Temperature	200 °C	
Interface Temperature	280 °C	

Table S 4: Separation efficiency for various AF4 membrane/ carrier liquid combinations. The fractionation of mono- and polydispersed solutions was concerned successful (marked with an "Y") when resulting in clear distinct peaks.

	50 nm	500 nm	fractionation of mixture
PES & Milli-Q	У	У	-
PES & SDS	-	-	-
PES & TWEEN	-	-	-
RC & Milli-Q	(y)	У	-
RC & SDS	у	У	У
RC & TWEEN	-	-	-

Figure S3: The pyrograms of a PS standard, and of PS (30 µg to 25 ng) that was added to surface water samples after analysis with Pyrolysis GC-MS. Each showing the total ion current (TIC), the chromatogram of selected masses (styrene m/z 104; tri-styrene m/z 312) and the mass spectra of selected peaks (A, B).

References

1. H. R. Veenendaal and A. J. Brouwer-Hanzens, A method for the concentration of microbes in large volumes of water, 2007.