1 Supplementary Information

2

3 Interaction of CuO Nanoparticles with Plant Cells: Internalization, Oxidative

4 stress, Electron Transport Chain Disruption, and Toxicogenomic Responses

- 5 Yanhui Dai,¹ Zhenyu Wang,^{2,3} Jian Zhao,¹ Lili Xu,¹ Lina Xu,¹ Xiaoyu Yu,¹ Yongpeng Wei,¹
- 6 and Baoshan Xing*,4
- 7
- 8 ¹ Institute of Costal Environmental Pollution Control, and Ministry of Education Key Laboratory
- 9 of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
- 10 ² Institute of Environmental Processes and Pollution Control, and School of Environmental and
- 11 Civil Engineering, Jiangnan University, Wuxi 214122, China
- 12 ³ Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for
- 13 Marine Science and Technology, Qingdao 266071, China
- 14 ⁴ Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003,
- 15 United States
- 16
- 17 *Corresponding author
- 18 Tel.: +1 413 545 5212; fax: +1 413 577 0242
- 19 E-mail address: <u>bx@umass.edu</u> (Dr. Baoshan Xing)

- 21
- 22
- 23
- 24
- 24
- 25

26 Materials and methods

27 Reactive oxygen species determination

The hydrogen peroxide (H_2O_2) was detected based on reacting with ammonium molybdate to produce a peroxomolybdic acid complex. H_2O_2 content was performed using a hydrogen peroxide assay kit (A064, Jiancheng, Nanjing, China). The coefficient of variation (CV) was 1.7%. Absorbance was determined at 405 nm by a microplate reader (Thermo, USA).

Hydroxyl radical (OH·) was determined using a hydroxyl free radial assay kit (A018, CV=1.4%, Jiancheng, Nanjing, China) based on the reaction of H_2O_2 with Fenton reaction. A colouration reaction was generated following the addition of the electron acceptor and Griess reagent. The absorbance was determined using a microplate reader (Thermo, USA) at 550 nm.

Superoxide anion (O_2^{-}) was determined by inhibition and produced produce superoxide anion assay kit (A052, CV=1.7%, Jiancheng, Nanjing, China). O_2^{-} was produced by the reaction of xanthine and xanthine oxidase. The solution was colored after adding the electron acceptor and Griess reagent.

42 Antioxidant enzyme activity, lipid peroxidation and lactate dehydrogenase (LDH)

43 determination

Catalase (CAT) was determined based on its ability to scavenge H₂O₂ according to 44 the method of the catalase assay kit (A007-1-1, CV=1.7%, Jiancheng, Nanjing, China). 45 CAT could catalyze H₂O₂, and the reaction could be ended by adding ammonium 46 molybdate into the solution. The surplus H₂O₂ interacted with ammonium molybdate 47 to produce a peroxomolybdic acid complex. The absorbance was determined at 405 nm 48 by a microplate reader (Thermo, USA). One unit of CAT activity was defied as the 49 amount of enzyme to 1 µmol H₂O₂ per second. SOD activity was examined by a 50 superoxide dismutase assay kit (A001-3, CV=1.2%, Jiancheng, Nanjing, China), and 51 expressed as U/mg protein. 52

53 Malondialdehyde (MDA) can react with thiobarbituric acid (TBA) to form TBA-54 reactive products. Lipid peroxidation in plant cells was assayed as the concentration of 55 TBA-reactive products at 535 nm, equated with MDA by the level of malondialdehyde 56 (MDA) which was measured by using the lipid peroxidation MDA assay kit (S0131,
57 Beyotime Biotechnology Institute, Jiangsu, China) following the manufacturer's
58 protocol.

59 Lactate dehydrogenase (LDH) was performed by using LDH Cytotoxicity Assay Kit

60 (C0016, Beyotime Institute of Biotechnology, Jiangsu, China). Cells were centrifuged

61 (123 ×g, 10 min) after incubation with CuO NPs (12 mg/L), CuO BPs (12 mg/L) or

62 Cu^{2+} (0.8 mg/L) for 4 h. The release of LDH in the supernatants was determined by

63 detecting the absorbance at 490 nm using a microplate reader (Thermo, USA).

- 68 Figure S1. TEM and SEM images of CuO NPs and BPs. (A) and (B) were the TEM images of CuO
- 69 NPs and BPs, respectively. (C) and (D) were the SEM images of CuO NPs and BPs, respectively.

73 the modified MS medium (n=3). The concentrations of CuO NPs and BPs were both 12 mg/L.

- 76 Figure S3. Cell viability after exposure to Cu²⁺ ions (9.6 mg/L, equal Cu content of CuO NPs at 12
- 77 mg/L) as a function of exposure time (0-24 h) (n=3).

80 Figure S4. High resolution TEM (HRTEM) image of intracellular CuO NPs after exposure to CuO

- 81 NPs (12 mg/L) for 12 h. This HRTEM image was the enlarged view of the region as marked with
- 82 blue box in Figure 2B.

83

Figure S5. TEM images of BY-2 cells after exposure to CuO BPs (12 mg/L) (A) and Cu²⁺ (0.8 87

- 88 mg/L) (B) for 12 h. In the two panels, Cu contents marked with blue boxes were analyzed with EDS,
- and the weight percentages of Cu content were shown along with the blue boxes. cw: cell wall; va: 89
- 90 vacuole; mit: mitochondria.
- 91
- 92

Figure S6. Internalization of CuO NPs by BY-2 cells. (A): Intracellular Cu content with/without the pre-treatment of an endocytosis inhibitor (wortmannin 33 μ M). After pre-treatment for 30 min, the cells were exposed to CuO NPs (2, 12 mg/L) for 12 h before Cu determination. (B): TEM image of plant cell after exposure to CuO NPs (12 mg/L, 12 h). (C): The elemental composition of vesicle in panel B (as marked with red dashed box) was analyzed with EDS. The insert in panel (C) listed the weight percentage and atom percentage of the detected elements. In panel (A), "*" indicates significant differences between the "Non-inhibitor" and "Inhibitor" treatments (p < 0.05, LSD, n=3).

Figure S7. Schematic diagram of mitochondrial electron transport chain and the target sites of four inhibitors (rotenone, TTFA, antimycin A and NaCN) in mitochondria. Rotenone could block the transfer of electrons from NADH to ubiquinone. Antimycin A can block electron transfer from ubisemiquinone to ubiquinol. TTFA inhibits electron transfer from succinate to ubiquinone. NaCN inhibits the oxidation of cyt a_3 by O_2 , which could decrease oxygen production. As indicated in the figure, CuO NPs blocked the electron transport from NADH to ubiquinone, and ubisemiquinone to ubiquinol. Cyt: cytochrome; TTFA: thenoyltrifluoroacetone; NaCN: sodium cyanide.

Figure S8. Hierarchical cluster (A) and volcano plot (B) for differential expression analysis of BY-2
cells after CuO NPs (0, 12 mg/L) exposure for 4 h. In panels A and B, red and green represent
significantly up-, and down-regulated genes, respectively (P-value < 0.05, fold change > 2). In panel
B, gray represents filtered genes, blue represents insignificantly expressed genes.

125

132

Figure S9. Expression level of the three selected genes as analyzed using qRT-PCR. The plant cells were exposed with CuO NPs (12 mg/L) for 12h. "*" represents significant difference at p < 0.05.

138 Figure S10. Bubble chart of the top 20 KEGG pathways. The left Y-axis indicate the KEGG

139 pathways, and the X-axis indicate the respective enrichment scores. A high P-value is represented

140 by purple, and low P-value is represented by red.

- 142 Table S1. The components of MS and modified MS medium (1/2 MS medium) for tobacco BY-2
- 143 cell culturing.

	Common and	MS medium	Modified MS
	Component	content (mg/L)	medium (mg/L)
Macronutrients	NH ₄ NO ₃	1650	875
	KH ₂ PO ₄	225	112.5
	KNO ₃	1900	975
	$CaCl_2 \cdot 2H_2O$	440	220
	MgSO ₄ ·7H ₂ O	370	185
Micronutrients	KI	0.83	0.415
	H_3BO_3	6.2	3.1
	$MnSO_4 \cdot 4H_2O$	22.3	11.15
	$ZnSO_4 \cdot 7H_2O$	8.6	4.3
	$Na_2MoO_4 \cdot 2H_2O$	0.25	0.125
	$CuSO_4 \cdot 5H_2O$	0.025	0.0125
	CoCl ₂ ·6H ₂ O	0.025	0.0125
Iron Source	EDTANa ₂ ·2H ₂ O	37.3	18.65
	FeSO ₄ ·7H ₂ O	27.8	13.9
Vitamins and Carbon Source	Myo-inositol	100	50
	Glycine	2	1
	Thiamine-HCl	1	0.5
	Pyridoxine-HCl	0.5	0.25
	Nicotinic acid	0.5	0.25
	Sucrose	30000	15000

146	Table S2. Results on RNA	quality assessment	of cells with and	without CuO N	VPs (12 mg/L)
-----	--------------------------	--------------------	-------------------	---------------	---------------

	Number	RNA concentration (µg/µL)	A260/280ª	Volume (µL)	Total yield (µg)	RIN
_	CK1	0.7071	2.05	50	35.36	9.8
	CK2	0.4972	1.99	50	24.86	10.0
	CK3	0.6190	2.06	50	30.95	9.7
	NP1	0.6894	2.01	50	34.47	10.0
	NP2	0.5794	1.98	50	28.97	10.0
	NP3	0.7641	2.03	50	38.21	10.0

147 exposure. The exposure time was 4 h.

148 a: A260/280 (the ratio of absorbance at 260 and 280 nm) is used to assess the purity of RNA. A ratio range at 1.8-

149 2.1 is accepted as "purity" for RNA. "RIN (RNA Integrity Number) \geq 7" was used for subsequent gene analysis.

151 Table S3. The primer sequences of the three selected genes during qRT-PCR, and the expression

152 level comparison of the three genes between qRT-PCR and RNA-Seq results.

Transcript -ID (N.	Forward primer	Reverse primer	P-value	Log ₂ fold change	Log ₂ fold change
tabacum)				(qRT-PCR)	(RNA-Seq)
XM_016653991.1	CACTGCTCCACGCTAACA	ATCATTAACTGCGTCAAGGC	1.98E-02	-0.78	-1.06
XM_016650487.1	TGGAGCAGACATTGCGAA	GATTGTGGTACTCTCACTCCT	1.49E-02	0.26	1.00
XM_016633593.1	AACCTCATTCTTCACTCGTTC	AGACCTTGCCGGACAATA	2.2E-03	1.06	2.01

153

154 Table S4. Characterization of CuO NPs and BPs

	Danitar	Surface	Size from	Size from TEM	Zeta	Hydrodynamic
Particles	(0/)	area	manufacturer		potential	diameter (nm)
	(%)	(m^{2}/g)	(nm)	(nm)	(mV)	
CuO	>00.0	12.01	<50	20.40	-11.8ª/-29.9b	238.4ª/161.3b
NPs	~99.9	12.01	<30	30-40		
CuO	>00.0	0.51	5000	1500 2500	-14.5ª/-15.3b	$2403^{a}/1377^{b}$
BPs	>99.9	0.51	5000	1500-2500		

¹⁵⁵ ^a Measured in 1/2 MS medium, the concentrations of CuO NPs and BPs were 12 mg/L.

156 ^b Measured in ultrapure water, the concentrations of CuO NPs and BPs were 12 mg/L.

157

158 Table S5. Information of RNA-Seq mapping results for the unexposed and CuO NPs-treated plant

159 cells.

Sample	Software	СК	СК	СК	CuO NPs	CuO NPs	CuO NPs
Tetel mede () ()	Tophat	5.49	5.57	4.89	5.30	6.43	5.17
Total reads (M)	Bowtie2	5.49	5.57	4.89	5.17	5.30	6.43
	Tophat	4.82	4.96	4.35	4.72	5.70	4.59
Total mapped reads (M)	Tophat	(87.9%)	(88.9%)	(89.0%)	(88.9%)	(88.6%)	(88.9%)
	Dourtio?	4.21	4.31	3.83	4.07	4.15	4.95
	Bowtie2	(76.8%)	(77.4%)	(78.3%)	(78.7%)	(78.2%)	(76.9%)
	Tophat	4.18	4.33	3.77	4.05	4.83	3.97
Poolo monad in proper poirs (M)	Tophat	(76.2%)	(77.8%)	(77.2%)	(76.3%)	(75.1%)	(76.9%)
Reads mapped in proper pairs (M)	Dourtio?	3.91	4.03	3.59	3.79	3.87	4.61
	Bowtie2	(71.2%)	(72.3%)	(73.4%)	(73.3%)	(73.0%)	(71.8%)

161 Table S6. The top 10 GO terms in the category of biological process, cellular component and

162 molecular function for the up-regulated genes in BY-2 cells after exposure to CuO NPs (12 mg/L)

163 for 4 h.

GO ID	GO Term	Category	Enrichment	P-value
			score	
GO:0032957	inositol trisphosphate metabolic process	Biological process	25.28	3.46E-06
GO:0042542	response to hydrogen peroxide	Biological process	10.11	4.05E-05
GO:0009408	response to heat	Biological process	5.55	9.92E-05
GO:0009693	ethylene biosynthetic process	Biological process	11.38	1.19E-04
GO:0010311	lateral root formation	Biological process	9.48	2.5E-04
GO:0009734	auxin-activated signaling pathway	Biological process	3.82	4.92E-04
GO:0006970	response to osmotic stress	Biological process	4.97	1.22E-03
GO:0010200	response to chitin	Biological process	4.53	1.86E-03
GO:0008152	metabolic process	Biological process	4.53	1.86E-03
GO:0009611	response to wounding	Biological process	3.76	2.14E-03
GO:0009705	plant-type vacuole membrane	Cellular component	5.42	8.25E-04
GO:0019005	SCF ubiquitin ligase complex	Cellular component	6.89	8.8E-04
GO:0005634	nucleus	Cellular component	1.45	1.78E-03
GO:0005737	cytoplasm	Cellular component	1.49	0.021
GO:0005802	trans-Golgi network	Cellular component	1.59	0.120
GO:0005794	Golgi apparatus	Cellular component	1.39	0.132
GO:0005768	endosome	Cellular component	1.52	0.136
GO:0005739	mitochondrion	Cellular component	1.27	0.157
GO:0005887	integral component of plasma membrane	Cellular component	1.32	0.192
GO:0048046	apoplast	Cellular component	1.22	0.230
GO:0016758	transferase activity, transferring hexosyl groups	Molecular function	14.22	4.66E-05
GO:0016491	oxidoreductase activity	Molecular function	3.79	1.02E-03
GO:0004674	protein serine/threonine kinase activity	Molecular function	2.08	6.66E-03
GO:0043565	sequence-specific DNA binding	Molecular function	2.23	0.013

GO:0005524	ATP binding	Molecular function	1.41	0.021
GO:0042802	identical protein binding	Molecular function	2.77	0.023
GO:0030170	pyridoxal phosphate binding	Molecular function	2.71	0.025
GO:0042803	protein homodimerization activity	Molecular function	2.42	0.035
GO:0044212	transcription regulatory region DNA binding	Molecular function	2.32	0.040
GO:0003700	transcription factor activity, sequence-specific	Molecular function	1.44	0.057
	DNA binding			

166 Table S7. The top 10 GO terms in the category of biological process, cellular component and

167 molecular function for the down-regulated genes in BY-2 cells after exposure to CuO NPs (12 mg/L)

168 for 4 h.

GO ID	GO Term	Category	Enrichment score	P-value
GO:0009624	response to nematode	Biological process	6.61	9.66E-05
GO:0009873	ethylene-activated signaling pathway	Biological process	4.06	1.53E-04
GO:0009809	lignin biosynthetic process	Biological process	6.32	3.85E-04
GO:0006952	defense response	Biological process	2.31	2.17E-03
GO:0042744	hydrogen peroxide catabolic process	Biological process	3.45	5.98E-03
GO:0007165	signal transduction	Biological process	3.48	0.010
GO:0006979	response to oxidative stress	Biological process	2.44	0.011
GO:0048364	root development	Biological process	2.71	0.016
GO:0006970	response to osmotic stress	Biological process	2.80	0.022
GO:0009611	response to wounding	Biological process	2.25	0.032
GO:0031966	mitochondrial membrane	Cellular component	5.17	2.54E-03
GO:0005576	extracellular region	Cellular component	1.73	0.019
GO:0005856	cytoskeleton	Cellular component	2.37	0.038
GO:0009579	thylakoid	Cellular component	1.90	0.074
GO:0005743	mitochondrial inner membrane	Cellular component	1.71	0.099
GO:0005739	mitochondrion	Cellular component	1.30	0.116
GO:0031969	chloroplast membrane	Cellular component	1.55	0.128
GO:0016021	integral component of membrane	Cellular component	1.13	0.155
GO:0005886	plasma membrane	Cellular component	1.12	0.231
GO:0009536	plastid	Cellular component	1.13	0.275
GO:0042409	caffeoyl-CoA O-methyltransferase activity	Molecular function	24.38	3.1E-06
GO:0052689	carboxylic ester hydrolase activity	Molecular function	7.42	6.3E-04
GO:0004674	protein serine/threonine kinase activity	Molecular function	1.84	0.011
GO:0003700	transcription factor activity	Molecular function	1.58	0.012
GO:0043565	sequence-specific DNA binding	Molecular function	1.91	0.025

GO:0016887	ATPase activity	Molecular function	2.34	0.039
GO:0004601	peroxidase activity	Molecular function	2.13	0.052
GO:0004842	ubiquitin-protein transferase activity	Molecular function	1.83	0.056
GO:0005215	transporter activity	Molecular function	2.06	0.058
GO:0044212	transcription regulatory region DNA	Molecular function	1.74	0.094
	binding			

GO ID	GO Term	P-value	Transcript ID	Gene ID	Log ₂ fold	Sequence	BLAST e value	Transcript ID	Gene Nam
			(N.tabacum)	(N. tabacum)	changes	matching rate		(Arabidopsis)	(Arabidops
GO:	mitochondrial membrane	0.018	XM_016655108.1	LOC107827888	-3.85	76.54	1E-153	AT1G34065.1	SAMC2
0031966			XM_016658402.1	LOC107830762	-3.98	69.2	6E-57	AT3G17611.2	ATRBL14
			XM_016660535.1	LOC107832675	-1.10	70.81	2E-77	AT3G28580.1	NN
GO:	mitochondrial inner	0.088	XM_016634074.1	LOC107809440	-1.48	69.97	3E-66	AT5G19630.1	NN
0005743	membrane		XM_016645539.1	LOC107819429	-1.42	76.49	2E-72	AT1G02410.1	COX11
			XM_016659246.1	LOC107831479	+/0	_	_	_	NN
GO:	mitochondrion	0.075	XM_016580765.1	LOC107762408	-1.13	70.12	3E-125	AT3G25210.1	NN
0005739			XM_016625037.1	LOC107801659	-2.72	72.52	0	AT5G22800.1	EMB86
			XM_016637446.1	LOC107812378	-1.43	64.95	5E-29	AT1G43980.1	PCMP-E58
			XM_016641052.1	LOC107815466	-1.58	74.85	0	AT4G17740.2	CTPA2
			XM_016641384.1	LOC107815753	-4.62	70.73	0	AT5G14220.1	PPOX2
			XM_016645539.1	LOC107819429	-1.42	76.49	2E-72	AT1G02410.1	COX11
			XM_016653798.1	LOC107826771	-1.83	70.11	4E-136	AT1G71060.1	NN
			XM_016653991.1	LOC107826946	-1.06	79.56	1E-171	AT3G27380.2	SDH2-1
			XM_016655108.1	LOC107827888	-3.85	76.54	1E-153	AT1G34065.1	SAMC2
			XM_016655916.1	LOC107828574	-2.45	67.42	6E-167	AT1G53600.1	PCMP-E6
			XM_016656504.1	LOC107829073	-1.80	_	_	_	NN
			XM_016658711.1	LOC107830996	-1.30	80	5E-09	AT1G50270.1	PCMP-E42
			XM_016659246.1	LOC107831479	+/0	-	_	_	NN
			XM_016659608.1	LOC107831816	-1.11	72.38	0	AT5G57480.1	NN
			XM_016660535.1	LOC107832675	-1.10	70.81	2E-77	AT3G28580.1	NN
GO:	respiratory chain	0.1026	XM_016634074.1	LOC107809440	-1.48	69.97	3E-66	AT5G19630.1	NN
0070469									
GO:	mitochondrial respiratory	0.003	XM_016653991.1	LOC107826946	-1.06	79.56	1E-171	AT3G27380.2	SDH2-1
0005749	chain complex II, succinate								
	dehydrogenase complex								

171 Table S8. The genes in the GO terms associated with mitochondria.

	(ubiquinone)								
GO:	NADH dehydrogenase	0.043	XM_016634074.1	LOC107809440	-1.48	69.97	3E-66	AT5G19630.1	NN
0008137	(ubiquinone) activity								
GO:	NAD(P)H dehydrogenase	0.0009	XM_016637993.1	LOC107812824	-2.88	72.92	4E-24	AT5G39210.1	CRR7
0010275	complex assembly								
GO:	mitochondrial respiratory	0.0003	XM_016659608.1	LOC107831816	-1.11	72.38	0	AT5G57480.1	NN
0034551	chain complex III assembly								
GO:	NAD binding	0.0003	XM_016660215.1	LOC107832374	-1.06	75.36	0	AT1G79750.1	NADP-MI
0051287									
GO:	respiratory chain	0.1026	XM_016634074.1	LOC107809440	-1.48	69.97	3E-66	AT5G19630.1	NN
0070469									
GO:	mitochondrion	0.157	XM_016580880.1	LOC107762521	1.06	79.53	0	AT3G12580.1	MED37C
0005739			XM_016596624.1	LOC107776706	0/+	71.25	9E-113	AT4G25290.1	NN
			XM_016612125.1	LOC107790219	1.79	66.77	2E-64	AT5G38710.1	POX2
			XM_016628836.1	LOC107804891	1.46	73.42	0	AT3G46100.1	ATHRS1
			XM_016633593.1	LOC107809014	2.01	80.03	0	AT1G15690.1	AVP1
			XM_016634294.1	LOC107809633	2.63	_	_	_	NN
			XM_016640170.1	LOC107814719	2.02	_	_	_	NN
			XM_016641568.1	LOC107815875	2.21	67.95	2E-118	AT1G07590.1	NN
			XM_016653973.1	LOC107826927	2.21	68.61	1E-78	AT4G27940.1	MTM1
			XM_016655266.1	LOC107828015	1.18	72.96	0	AT2G38400.1	AGT3
			XM_016660604.1	LOC107832733	5.59	65.2	4E-58	AT5G57250.1	NN
GO:	protein import into	0.0001	XM_016650487.1	LOC107823778	1.00	71.38	0	AT2G29080.1	FTSH3
0045041	mitochondrial								

intermembrane space

172 "-" indicated that this gene cannot match to that of Arabidopsis. Sequence matching rate of BY-2 cells in this work was matched

173 with that of Arabidopsis.

174 "NN" in the last column indicates "No Name" of this gene was found from the genome of Arabidopsis

175 (http://www.arabidopsis.org).

- 176 "+/0" means the gene only expressed in the unexposed cells, and this gene in the CuO NPs-treated cells was down-regulated.
- 177 "0/+" means the gene only expressed in the CuO NPs-treated cells, and this gene was up-regulated because it was not expressed in
- 178 the unexposed cells.
- 179
- 180

Transcript ID (N.	Gene ID	Log ₂ fold	Sequence	BLAST e	Transcript ID	Gene Name
tabacum)	(N. tabacum)	change	matching rate	value	(Arabidopsis)	(Arabidopsis)
XM_016578004.1	LOC107759987	1.31	70.77	3.00E-77	AT5G02780.1	GSTL1
XM_016578005.1	LOC107759987	1.12	70.77	3.00E-77	AT5G02780.1	GSTL1
XM_016589828.1	LOC107770509	1.77	71.56	1.00E-83	AT5G02790.1	GSTL3
XM_016599675.1	LOC107779283	1.12	67.77	9.00E-39	AT1G02920.1	GSTF7
XM_016600186.1	LOC107779712	-3.70	69.9	3.00E-26	AT2G29450.1	GSTU5
XM_016600476.1	LOC107779974	1.42	70.39	2.00E-82	AT4G32320.1	APX6
XM_016603912.1	LOC107782951	1.66	73.42	3.00E-108	AT1G78380.1	GSTU19
XM_016603942.1	LOC107782987	1.48	72.98	9.00E-39	AT2G29420.1	GSTU7
XM_016605205.1	LOC107784134	-1.09	66.14	1.00E-44	AT4G39640.2	GGT1
XM_016611777.1	LOC107789895	1.74	66.67	1.00E-24	AT3G09270.1	GSTU8
XM_016617453.1	LOC107794892	-1.57	77.55	0	AT5G35790.1	APG1
XM_016617761.1	LOC107795177	1.20	81.25	1.00E-31	AT1G02920.1	GSTF7
XM_016621022.1	LOC107798067	1.53	68.9	3.00E-26	AT2G29420.1	GSTU7
XM_016624113.1	LOC107800866	1.60	69.9	3.00E-26	AT2G29450.1	GSTU5
XM_016641574.1	LOC107815922	-1.39	_	_	_	NN
XM_016650661.1	LOC107823949	1.37	72.86	3.00E-102	AT1G78380.1	GSTU19
XM_016659023.1	LOC107831268	1.16	67	1.00E-24	AT3G09270.1	GSTU8
XM_016660621.1	LOC107832748	1.01	71.22	0	AT5G27380.1	GSH2
XM_016640514.1	LOC107815009	-1.63	69.53	1.00E-16	AT2G29420.1	GSTU7

181 Table S9. The genes that belong to glutathione metabolism in KEGG pathway analysis.

182 "-" indicated that this gene cannot match to that of Arabidopsis. Sequence matching rate of BY-2 cells in this work was matched

183 with that of Arabidopsis.

184 "NN" in the last column indicates "No Name" of this gene was found from the genome of *Arabidopsis* 185 (http://www.arabidopsis.org).