Supporting Information

Anion recovery from water by cross-linked cationic surfactant

nanoparticles across dialysis membranes

Ming Chen^a, Chad T. Jafvert^{a,b,*}

^a Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA

^b Division of Environmental and Ecological Engineering, Purdue University, West

Lafayette, IN 47907, USA

* Corresponding author info: Chad T. Jafvert, <u>jafvert@ecn.purdue.edu</u>

	Equations ^{†‡}
	$[Cl^{-}]_{total} = [QASE]_{total} + [Cl^{-}]_{initial}$
	$[Cl^{-}]_{total} = [Cl^{-}]_{aq} + [Cl^{-}]_{mic} * [M]$
Mass	$[B_i^-]_{total} = [B_i^-]_{aq} + [B_i^-]_{mic} * [M]$
balances	$[B_j^{2^-}]_{total} = [B_j^{2^-}]_{aq} + [B_j^{2^-}]_{mic} * [M]$
	$[M] = [QASE]_{total}$
	$[Cl^{-}]_{mic} + \sum_{i} [B_{i}^{-}]_{mic} + 2\sum_{j} [B_{j}^{2-}]_{mic} = 1$
Mass	$K_{sel_{A^{-}}}^{B_{i}^{-}} = \frac{[Cl^{-}]_{aq}[B_{i}^{-}]_{mic}}{[Cl^{-}]_{mic}[B_{i}^{-}]_{aq}}$
action	$K_{sel_{A^{-}}}^{B_{j}^{2^{-}}} = \frac{[Cl^{-}]_{aq}^{2}[B_{j}^{2^{-}}]_{mic}}{[Cl^{-}]_{mic}^{2}[B_{j}^{2^{-}}]_{aq}}$
рН	$pH = -log[H^+]$
Speciation	$K_a = \frac{[H^+][HPO_4^{2^-}]}{[H_2PO_4^-]}$

Table S1. Equations for calculating anion distribution between water and micelles¹

⁺ B_i is F⁻, Cl⁻, H₂PO₄⁻, NO₂⁻, or NO₃⁻; B_j is SO₄²⁻ or HPO₄²⁻. For mass balance of phosphate, $[PO_4^{3-}]_{total} = [H_2PO_4^{--}]_{aq} + [HPO_4^{2-}]_{aq} + [H_2PO_4^{--}]_{mic} * [M] + [HPO_4^{2-}]_{mic} * [M]$

[‡]Items and units have been defined in section 2.4 in the paper.

Figure S1. Iterative least squares method used to minimize residuals between the lefthand and right hand sides of the equations in the last box $([PO_4^{3-}]_{total}, [SO_4^{2-}]_{total}, and$ the total concentration of micellar phase species {i.e., = 1 mole/mole}), by adjusting the guesses on $[Cl^{-}]_{aq}$, $[SO_4^{2-}]_{aq}$, and $[H_2PO_4^{-}]_{mic}$ after each iteration, using Solver in Excel. ¹

Figure S2. Intensity size distribution of QACLE micelles at different concentrations

The intensity distribution (shown in **Figure S2**) is weighted based on the scattering intensity of each particle fraction, and is more accurate than number and volume distributions; however it is usually influenced by large particles (impurities). Through number distribution and intensity distribution, the average sizes of QACLE micelles were determined to be 4.81 ± 0.21 nm for 5 mM, and 1.86 ± 0.07 nm for 50 mM.

Figure S3. Distribution of HPO₄²⁻ and Cl⁻ in different phases in binary systems *x*: normality fraction of anions in the aqueous phase, $x = \frac{\alpha [A^{\alpha-}]_{aq}}{\alpha [A^{\alpha-}]_{aq} + \beta [B^{\beta-}]_{aq}}$ *y*: normality fraction of anions in the micellar phase, $y = \frac{\alpha [A^{\alpha-}]_{mic}}{\alpha [A^{\alpha-}]_{mic} + \beta [B^{\beta-}]_{mic}}$

The experimental conditions of the distribution test were the same as in the experiments to measure selectivity coefficients. It can be seen from the figure, HPO_4^{2-} has a much greater affinity for the micellar phase than Cl⁻. For example, when the normality fraction of HPO_4^{2-} in the aqueous phase is 0.2 (x = 0.2), its normality fraction in the micellar phase is about 0.5 (y = 0.5 > x). However, the distribution of Cl⁻ is below the line of y = x, indicating a lower affinity than HPO_4^{2-} .

Figure S4. Relationship between measured aqueous concentrations and model predicted values for each anion

Reference:

1. M. Chen and C. T. Jafvert, Anion exchange on cationic surfactant micelles, and a speciation model for estimating anion removal on micelles during ultrafiltration of water, *Langmuir*, 2017, **33**, 6540-6549.