Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

# **Supporting Information**

## Surface deep oxidation of ofloxacin and 2,4-dichlorophenol over

#### ferrocene@sepiolite due to their synergic and cooperative effect in visible light

## driven heterogeneous Fenton reaction process

Xike Tian<sup>a, \*</sup>, Xiaoyu He<sup>a</sup>, Yulun Nie<sup>a</sup>, Zhaoxin Zhou<sup>a</sup>, Chao Yang<sup>a</sup>, Yanxin Wang<sup>b</sup>

<sup>a</sup> Faculty of Materials Science and Chemistry, China University of Geosciences,

Wuhan 430074, P. R. China.

<sup>b</sup> School of Environmental Studies, China University of Geosciences, Wuhan 430074,

P.R. China.

\*Corresponding author: Prof. Xike Tian

E-mail: xktian@cug.edu.cn

Tel.: +86-27-6788-4574, Fax: +86-27-6788-4574

## **Summary:**

Supporting information contains 3 pages, including 2 Figures and 2 Tables.

|          | Carbon (%) | Hydrogen (%) | C/H ratio |
|----------|------------|--------------|-----------|
| Sep      | 0.17       | 0.74         | 0.23      |
| FeCp@Sep | 3.97       | 1.13         | 3.51      |

 Table S1. Elemental analysis results for Sep and FeCp@Sep.



**Fig. S1.** Changes of UV-vis spectra of 2,4-DCP and relevant photos of catalysts in solution during different visible light driven heterogeneous Fenton systems: (A) FeCp, and (B) FeCp@Sep.



Fig. S2. Effects of (A) catalyst amount and (B)  $H_2O_2$  dosage on the OFX removal efficiency in FeCp@Sep-H<sub>2</sub>O<sub>2</sub>-Vis system.

| Mass (m/z) | Formula weight | Formula                                                        | Proposed structure |
|------------|----------------|----------------------------------------------------------------|--------------------|
| 366.1093   | 365            | C <sub>16</sub> H <sub>16</sub> FN <sub>3</sub> O <sub>6</sub> |                    |
| 364.1296   | 363            | C <sub>17</sub> H <sub>18</sub> FN <sub>3</sub> O <sub>5</sub> |                    |
| 348.1353   | 347            | C <sub>17</sub> H <sub>18</sub> FN <sub>3</sub> O <sub>4</sub> |                    |
| 322.1196   | 321            | C <sub>15</sub> H <sub>16</sub> FN <sub>3</sub> O <sub>4</sub> |                    |
| 305.0942   | 304            | C <sub>15</sub> H <sub>13</sub> FN <sub>2</sub> O <sub>4</sub> |                    |
| 304.1447   | 303            | C <sub>16</sub> H <sub>18</sub> FN <sub>3</sub> O <sub>2</sub> |                    |
| 274.0994   | 273            | C <sub>14</sub> H <sub>12</sub> FN <sub>3</sub> O <sub>2</sub> |                    |
| 219.0568   | 218            | $C_{11}H_7FN_2O_2$                                             | H <sub>2</sub> N N |

Table S2. Main products of OFX degradation in  $FeCp@Sep-H_2O_2$ -Vis system by

HPLC-MS.