Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

Supporting Information for 1 2 3 A facile method to study the bioaccumulation kinetics of 4 amorphous silica nanoparticles by quantum dot embedding 5 Xiao-Mei Zang[#], Jia-Ming Li[#], Ying Wang, Yue-Yue Liu, Zhong-Bo Wei, Liuyan Yang, 6 Ai-Jun Miao* 7 8 9 State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210046, China 10 11 12 13 *These authors contributed equally. 14 15 *Corresponding author: 16 A.-J. Miao, School of the Environment, Nanjing University, Mail box 24, Xianlin Road 163, 17 Nanjing 210046, Jiangsu Province, China PRC (mailing address), 86-25-89680255 (phone), 18 19 86-25-89680569 (fax), miaoaj@nju.edu.cn (email)

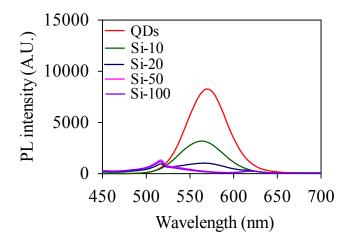
- 20 Calculation of the particle-number- and surface-area-based concentration of
- 21 QDsAmSiNPs in the medium and their respective uptake rate
- Taking into account the porous nature of the ^{QDs}AmSiNPs, the particle number per unit mass
- of Si $(N, \text{ particles pg Si}^{-1})$ was calculated according to Eq. (S1):

$$N = \frac{\frac{1}{\rho} + V}{\frac{4}{3}\pi r^3} \tag{S1}$$

- where ρ represents the physical density of amorphous SiO₂ (1.03 g Si cm⁻³), V the pore
- volume of QDs AmSiNPs as measured by N_2 desorption analysis (cm³ g Si⁻¹), and r the radius
- of the NPs (μ m). Based on Eq. (S1), [AmSiNPs]_{med-N} and V_N could be calculated as shown in
- 28 Eqs. (S2) and (S3):

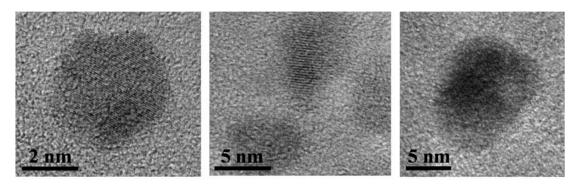
[AmSiNPs]_{med-N} = [AmSiNPs]_{med-m} ×
$$N \times 10^9$$
 (S2)

$$V_{\rm N} = V_{\rm m} \times N \tag{S3}$$


- According to [AmSiNPs]_{med-N} and V_N , [AmSiNPs]_{med-S} and V_S were further calculated using
- 32 Eqs. (S4) and (S5):

[AmSiNPs]_{med-S} = [AmSiNPs]_{med-N} ×
$$4\pi r^2$$
 (S4)

$$V_{\rm S} = V_{\rm N} \times 4\pi r^2 \tag{S5}$$


- Here, the surface area $(4\pi r^2, \mu m^2 \text{ particle}^{-1})$, as the area of the outer surface of QDs AmSiNPs
- 36 (not including the area of the pore surface), was used instead of the specific surface area.
- 37 Although the latter was much higher than the former, the area of the pore surface is hardly
- able to contact the cell membrane such that its contribution to the speed of membrane

• •	•	• ,•	1	. 1 1		1	1	1.	1 1	1		1	1 .
20	110 170	CIMOTION	1 00th h	e considered	+~	horro	haan	100011	1 - 1 + 1 - 1	0100	TITOG 100t	11000	harain
39	1111/2	ошаны	i Cali D	e considered	1()	HAVE	110011	116011	1011111	21161	M/4S HGH	118-01	nereni
<i>J</i> /	111 Y U	Lamuioi	ı canı c	c combiacica	· w	mu v C		110511		una	was mot	asca	11010111.

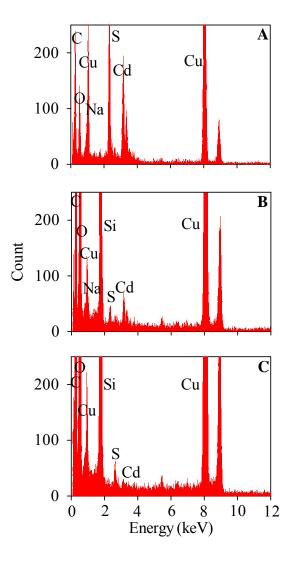


Fig. S1 The photoluminescence intensity of QDs, Si-10, Si-20, Si-50, and Si-100.

42

Fig. S2 The high resolution TEM image of (A) CdSeTe, (B) QDs, and (C) Si-10.

Fig. S3 The energy-dispersive X-ray spectra of (A) CdSeTe, (B) QDs, and (C) Si-10.