Electronic Supplementary Information

Co-effects of UV/H₂O₂ and Natural Organic Matter on the Surface Chemistry of Cerium Oxide Nanoparticles

Xuanhao Wu¹, Chelsea W. Neil¹, Doyoon Kim¹, Haesung Jung¹, and Young-Shin Jun^{1,*}

¹Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130

*E-mail: ysjun@seas.wustl.edu

Summary

16 pages, including experimental descriptions, 7 figures, and 8 tables.

S1. Characterization of CeO₂ nanoparticles

TEM Sample Preparation: Approximately 50 μ L of the CeO₂ solution was placed onto 200-mesh Cu grids with Formvar-carbon films. After drying, the morphology and lattice spacing were determined using high resolution transmission electron microscopy (HRTEM, JEOL 2100F) with a 200 kV accelerating voltage. The lattice spacings closely matched those of CeO₂ nanoparticles.¹⁻²

Fig. S1 (A) and (B): Representative TEM images and lattice spacing for unreacted CeO₂ NPs with 10 mM NaCl at pH 5.4. (C): Wide angle X-ray diffraction patterns of CeO₂ NPs taken at sector 11-ID-B of the Advanced Photon Source at Argonne National Laboratory. (D) Zeta potential of CeO₂ NPs in 10 mM NaCl at different pH values to determine the isoelectric point (i.e., \sim pH 6.9).

S2. NOM stock solution preparation.

Preparation of NOM Stock Solution: To create SRNOM stock solutions, 100 mg of NOM was added to 200 mL of DI water and stirred overnight in dark conditions (the bottle was wrapped in aluminum foil). The pH of the solution was then adjusted to 8.5 to increase the solubility before vacuum-filtering. This SRNOM stock solution was refrigerated prior to experimentation. Non-purgeable organic carbon (NPOC) concentrations in the stock solution were measured using a Shimadzu total organic carbon (TOC) Analyzer.

 Table S1. Characterization of Suwannee River NOM provided by the International Humic

 Substances Society (IHSS).³

Carboxyl	Phenolic		L		0	Lark		N	DMCE
(meq/g C)	(meq/g C)	Q_1	LogK ₁	n_1	Q_2	Log _{K2}	n_2	IN	KMSE
11.21	2.47	11.20	4.16	3.44	1.60	9.99	1.03	1705	0.1360
Source: Department of Chemistry, Environmental Sciences Ph.D. Program, Ball State University,									
Muncie, IN, U.S.A.									
Q_1 and Q_2 are the maximum charge densities of the two classes of binding sites									
Log K ₁ and Log K ₂ are the mean log K values for proton binding by the two classes of sites									
\mathbf{n}_1 and \mathbf{n}_2 are empirical parameters that control the width (in log K) of a class of proton binding sites									

S3. CeO₂ sedimentation experimental design.

Fig. S2 Experimental procedures for UV-Vis, DLS, ICP-OES, TEM, XPS, and FTIR, and the irradiance spectrum of the UVA light source measured using a SpectrlLight 3. Suspended CeO₂ solutions at pH 5.4 were put into 50 mL test tubes and reacted for 2 hours. The ionic strength of the solutions was controlled at 10 mM using NaCl. At certain reaction times, 1 mL of supernatant was taken out to be measured using UV-Vis and DLS. After 2h reaction, the solutions were centrifuged for 15 minutes. The supernatant was taken out, leaving the sediment in the test tubes. The sediment was left to dry in an anaerobic chamber to prevent any further oxidation from air. XPS and FTIR were measured using the sedimentation as soon as it was dried.

		CeO ₂	H_2O_2	NOM			NaCl
Conditions		(mg/L)	(mM)	(mg C/L)	UV	рН	(mM)
	H ₂ O ₂	50	0/3/30	-	Yes	5.4 ± 0.1	10
Light	NOM	50	-	3.3 ± 0.2	Yes	5.4 ± 0.1	10
	$H_2O_2 + NOM$	50	3/30	3.3 ± 0.2	Yes	5.4 ± 0.1	10
	H_2O_2	50	0/3/30	-	No	5.4 ± 0.1	10
Dark	NOM	50	-	3.3 ± 0.2	No	5.4 ± 0.1	10
	$H_2O_2 + NOM$	50	3/30	3.3 ± 0.2	No	5.4 ± 0.1	10

 Table S2. Detailed experimental conditions for UV-Vis experiments.

Fig. S3 Observed differences in the sedimentation of CeO_2 NPs in the presence of UV/H₂O₂ and/or NOM compared with the control experiment with 10 mM NaCl at pH 5.4 after 2 hrs reaction.

Fig. S4 UV-Vis data showing sedimentation of CeO₂ NPs with 10 mM NaCl at pH 5.4 in the presence and absence of UV/H₂O₂ and NOM: (A) CeO₂ with UV and H₂O₂. A higher concentration of H₂O₂ increased the extent of sedimentation; (B) CeO₂ with H₂O₂. H₂O₂ alone showed destabilizing effects on CeO₂; (C) CeO₂ with NOM, UV, and H₂O₂. With a higher concentration of H₂O₂, CeO₂ started to settle in a shorter time range; and (D) CeO₂ with NOM and H₂O₂. NOM concentration was quantified as 3.3 ± 0.2 mg C/L by NPOC. The percentages were obtained by normalizing the suspended nanoparticle concentration by the initial suspended concentration measured using UV-Vis. The error bars represent the standard deviation of CeO₂ NP concentrations from triplicate experiments.

Table S3. Zeta potential and hydrodynamic particle size values for CeO₂ NPs with 10 mM NaCl at pH 5.4 in the presence and absence of UV/H₂O₂ and NOM. The initial CeO₂ NPs concentration was 50 mg/L, and the NOM concentration was 3.3 ± 0.2 mg C/L. The zeta potential for stable dispersions of unreacted CeO₂ in DI water at pH 5.4 was 39.2 ± 3.4 mV. The hydrodynamic particle size was 140.7 ± 53.0 nm for stable dispersions of unreacted CeO₂ in DI water at pH 5.4.

Conditions	Zeta poter	ntial (mV)	Z-Ave (d. nm)		
Conditions	1 hr	2 hrs	1 hr	2 hrs	
CeO ₂	39.5 ± 2.6	38.6 ± 5.1	256.0 ± 49.0	460.0 ± 60.1	
$CeO_2 + UV$	38.8 ± 4.2	35.0 ± 4.6	275.0 ± 59.9	513.0 ± 74.0	
$CeO_2 + 30 \text{ mM H}_2O_2$	32.0 ± 4.5	30.9 ± 3.3	1983.0 ± 132.1	2706.0 ± 145.4	
$CeO_2 + UV + 30 \text{ mM } H_2O_2$	5.4 ± 3.8	3.8 ± 3.4	3954.0 ± 171.8	5574.0 ± 252.8	
$CeO_2 + NOM$	-43.9 ± 6.9	-38.3 ± 1.8	153.0 ± 35.5	174.7 ± 38.5	
$CeO_2 + NOM + UV$	-40.8 ± 4.6	-36.4 ± 1.7	172.3 ± 34.5	182.0 ± 39.2	
$CeO_2 + NOM + 30 \text{ mM } H_2O_2$	-39.5 ± 5.2	-36.2 ± 1.1	173.9 ± 30.9	183.9 ± 39.3	
$CeO_2 + NOM + UV + 30 \text{ mM } H_2O_2$	-38.9 ± 5.6	-12.9 ± 2.1	250.6 ± 41.4	3276.0 ± 122.3	

Conditions	Starting pH values	Final pH values (2h)
CeO ₂	5.4 ± 0.1	5.7 ± 0.1
$CeO_2 + UV$	5.4 ± 0.1	5.6 ± 0.1
$CeO_2 + 3 mM H_2O_2$	5.4 ± 0.1	5.3 ± 0.1
$CeO_2 + 30 \text{ mM H}_2O_2$	5.4 ± 0.1	5.3 ± 0.1
$CeO_2 + UV + 3 mM H_2O_2$	5.4 ± 0.1	5.3 ± 0.1
$CeO_2 + UV + 30 \text{ mM } H_2O_2$	5.4 ± 0.1	5.1 ± 0.1
$CeO_2 + NOM$	5.4 ± 0.1	5.1 ± 0.1
$CeO_2 + NOM + UV$	5.4 ± 0.1	4.9 ± 0.1
$CeO_2 + NOM + 3 mM H_2O_2$	5.4 ± 0.1	4.9 ± 0.1
$CeO_2 + NOM + 30 \text{ mM } H_2O_2$	5.4 ± 0.1	4.9 ± 0.1
$CeO_2 + NOM + UV + 3 mM H_2O_2$	5.4 ± 0.1	4.7 ± 0.1
$CeO_2 + NOM + UV + 30 \text{ mM } H_2O_2$	5.4 ± 0.1	4.6 ± 0.1

Table S4. pH measurements of the reaction and control systems for CeO₂ NPs at 10 mM NaCl and an initial pH of 5.4.

CeO₂ nanoparticle dissolution tests using inductively coupled plasma optical emission spectrometry (ICP-OES): Due to the low solubility of CeO₂, 250 mg/L CeO₂ suspensions and 150 mM H₂O₂ were used in order to achieve aqueous Ce concentrations higher than the detection limit of ICP-OES (25 μ g/L). Because the concentrations of CeO₂ and H₂O₂ were scaled up by the same multiples, this elevated concentration system is relevant to lower concentration systems. Reactions were prepared as described for sedimentation experiments. At 1 hr and 2 hrs, triplicate samples were placed in ultracentrifuge tubes (PC Oak Ridge Tubes, Fisher Scientific) and ultracentrifuged using a Thermo Scientific Sorvall WX Ultra Series Centrifuge with a T865 Fixed Angle Rotor at 40,000 rpm (or 115,861g) for 30 min. After ultracentrifuging, samples were filtered using a 0.2 µm polypropylene filter (Millipore syringe filter) to ensure the removal of all bulk CeO₂ NPs and aggregates. The filtrate was collected and acidified to 1% v/v nitric acid for ICP-OES measurements. This method was also used in our previous studies and other CeO₂ NP dissolution studies.⁴⁻⁵ From the results (Table S2), UV/H₂O₂ exposure did not promote CeO₂ NP dissolution compared with the control system.

Table S5. Dissolved Ce concentrations (μ g/L) in NaCl systems in the presence of UV and H₂O₂ at pH 5.4, measured by ICP-OES. Std. Dev., standard deviation with 95% confidence level.

System	1 hr	Std. Dev.	2 hrs	Std. Dev.
$CeO_2 + NaCl + UV + H_2O_2$	11.9	2.3	6.4	3.2
$CeO_2 + NaCl + UV$	17.7	4.7	20.6	21.6
$CeO_2 + NaCl + H_2O_2$	26.6	4.4	23.9	6.1
$CeO_2 + NaCl$	18.6	5.2	39.7	14.8

NOM decomposition measurement using ion chromatography (IC): Reactions were prepared as described for sedimentation experiments. At 0, 20, 40, 60, 80, 100, and 120 minutes, triplicate samples were filtered using a 0.2 μ m polypropylene filter (Millipore syringe filter). Both formate and acetate were measured, but only acetate was detected during the reaction.

Fig. S5 Measurement of acetate produced from the decomposition of NOM during the reaction with CeO_2 and UV/H_2O_2 exposure using ion chromatography (IC).

S4. XPS reference

Table S6. XPS reference binding energies, absolute values of areas for each peak, and calculatedpercentages of Ce^{3+} at different conditions for Ce 3d.

	U"	U'	U	V""	V''	V'	V	
BE (eV)	907.20	903.50	900.60	897.90	888.30	885.0	881.90	Ce ³⁺⁰ ⁄0
	Ce ⁴⁺	Ce ³⁺	Ce ⁴⁺	Ce ⁴⁺	Ce ⁴⁺	Ce ³⁺	Ce ⁴⁺	
CeO ₂ control	1708	1614	2762	6150	4992	2797	4730	17.8%
$CeO_2 + UV/H_2O_2$	8524	15094	11555	22697	16731	16128	19459	28.3%
$CeO_2 + NOM$	2907	3234	3498	7190	5238	2361	6671	18.0%
CeO ₂ + NOM + UV/H ₂ O ₂	3139	5960	11753	16325	11326	11179	18904	21.8%

	C 1s					
Area and percentages	C-C	C=O	O-C=O	Total of		
	(284.8 eV)	(285.6 eV)	(288.8 eV)	C=O and O-C=O		
	6427	653	396	1049		
CeO_2 control	86.0%	8.7%	5.3%	14.0%		
	14828	1985	2140	4125		
$CeO_2 + UV/H_2O_2$	78.2%	10.5%	11.3%	21.8%		
	10786	4203	1951	6154		
$CeO_2 + NOM$	63.7%	24.8%	11.5%	36.3%		
	15586	3027	1642	4669		
$CeO_2 + NOM + UV/H_2O_2$	77.0%	14.9%	8.1%	23.0%		

Table S7. XPS reference binding energies, absolute values of areas for each peak, and calculated

 percentages of each corresponding bond at different conditions for C 1s.

		O 1s						
	OI	O _{II}	OIII	OIN				
Area and	Lattice exugen	Superposition of	Hydroxyl-like	Residual				
percentages	(528.9 eV)	CO_3^{2-} and $\text{O}_2^{}$	groups	adsorbed H ₂ O				
	(520.9 0 1)	(530.1 eV)	(531.8 eV)	(534.1 eV)				
CoOs control	8942	1988	5188	1221				
	51.6%	11.5%	29.9%	7.0%				
$C_{2}O_{2} + UV/H_{2}O_{2}$	5799	6545	4662	765				
$CeO_2 + O_1/H_2O_2$	32.6%	36.8%	26.2%	4.3%				
$CeO_2 + UV/H_2O_2$	5628	8675	2709	1058				
+ t-ButOH	31.1%	48.0%	15.0%	5.9%				
$CeO_2 + UV/H_2O_2$	8176	2759	3738	506				
+ SOD	53.9%	18.2%	24.6%	3.3%				

Table S8. XPS reference binding energies, absolute values of areas for each peak, and calculated

 percentages of each corresponding bond at different conditions for O 1s.

S5. FTIR spectrum of unreacted CeO2 NPs

Fig. S6 FTIR spectrum of unreacted CeO₂ NPs.

S6. Contact angles of DI water on CeO₂-sputtered Si wafers under different conditions

Fig. S7 Measurements of contact angles for CeO₂-sputtered Si wafers at 10 mM IS and pH 5.4. A: contact angles of (i) unreacted CeO₂-Si wafer at 0 hr, (ii) CeO₂-sputtered Si wafer with NaCl solution at 2 hrs, (iii) CeO₂-sputtered Si wafer with 10 mM NaCl and 3.3 mg C/L NOM at 2 hrs, (iv) CeO₂-sputtered Si wafer with 10 mM NaCl, 3.3 ± 0.2 mg C/L NOM, UV, and 30 mM H₂O₂ at 2 hrs. **B**: Atomic force microscopy (AFM) image (4 µm × 4 µm) of an unreacted CeO₂-sputtered Si wafer piece Si wafer surface. For each experimental condition, a 5 mm × 5 mm CeO₂-sputtered Si wafer piece was cut from a larger CeO₂-sputtered Si wafer to be used.

References

- Hailstone, R.; DiFrancesco, A.; Leong, J.; Allston, T.; Reed, K., A study of lattice expansion in CeO₂ nanoparticles by transmission electron microscopy. *J. Phys. Chem. C* 2009, *113* (34), 15155-15159.
- 2. Huang, X.; Beck, M. J., Determining the oxidation state of small, hydroxylated metal-oxide nanoparticles with infrared absorption spectroscopy. *Chem. Mater.* **2015**, *27* (8), 2965-2972.
- 3. IHSS, The International Humic Substances Society.
- Liu, X.; Ray, J. R.; Neil, C. W.; Li, Q.; Jun, Y.-S., Enhanced Colloidal Stability of CeO₂ Nanoparticles by Ferrous Ions: Adsorption, Redox Reaction, and Surface Precipitation. *Environ. Sci. Technol.* 2015, 49 (9), 5476-5483.
- 5. Rogers, N. J.; Franklin, N. M.; Apte, S. C.; Batley, G. E.; Angel, B. M.; Lead, J. R.; Baalousha, M., Physico-chemical behaviour and algal toxicity of nanoparticulate CeO₂ in freshwater. *Environ. Chem.* **2010**, *7* (1), 50-60.