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Collision kernels. The collision kernel for environmental colloids is commonly given as the sum 

of three mechanisms including perikinetic collisions (Brownian), orthokinetic collisions (shear-

induced aggregation when there is motion in the fluid), and differential settling which stands for 

collection of smaller aggregates by the larger ones in their sedimentation path.1 Combining fractal 

dimension relationships and permeability drag effects2, 3 and expressing the collision rates with the 

solid volume (or mass) of aggregates as a representative variable,4-6 the following relationships 

yield:
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The superposition of the three rates gives the total rate of collisions, :𝛽(𝑖,𝑗)

𝛽(𝑖,𝑗) = 𝛽𝑃𝑟𝑖𝑘(𝑖,𝑗) + 𝛽𝑂𝑟𝑡ℎ(𝑖,𝑗) + 𝛽𝐷𝑖𝑓𝑓(𝑖,𝑗) (S4).

where  is the collision kernel or collision frequency [L3T-1],  is the differential settling 𝛽 𝛽𝐷𝑖𝑓𝑓

collision frequency [L3T-1],  is the orthokinetic collision frequency [L3T-1],  is the 𝛽𝑂𝑟𝑡ℎ 𝛽𝑃𝑟𝑖𝑘

perikinetic collision frequency [L3T-1],  is the dynamic viscosity of the suspending medium [M 𝜇

T-1 L-1], T is temperature [ ],  is the Boltzman constant,  is the solid volume of each aggregate °𝐾 𝑘𝑏 𝑣

[L3],  is the solid volume of primary particles [L3],  is the sedimentation velocity of each 𝑣0 𝑈

aggregate [LT-1], G is shear rate [T-1],  is fractal dimension [–], and  is the ratio of drag force 𝐷𝑓 Ω𝑖

exerted on a permeable aggregate to drag force exerted on an impervious aggregate with the same 

size, and can be calculated as for each aggregate in size class i:3, 7-9
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where  is the non-dimensional permeability of the porous aggregates in each size class given as:𝜉𝑖

𝜉𝑖 =
𝑎𝑖

𝜅𝑖
1/2 (S6)

The fluid collection efficiency of each aggregate in size class i, , is defined as the ratio of flow  𝜂𝑐𝑖

through an aggregate to total flow approaching the aggregate and can be determined from the 

Brinkman equation:3, 10
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In Eqs. (S8-S10) and their consequent equations, the subscript i has not been placed for parameters 

for the sake simplicity. 

The Brinkman permeability model2, 3, 10, 11 is given as:
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where porosity, , is determined from:5, 10, 12𝜑𝑖
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where  is the primary particle radius [L] and  is an aggregate radius in size class i [L]. 𝑎0 𝑎𝑖
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The settling velocity of each aggregate in size class k, , can be calculated from an empirical 𝑈𝑘

power law equation that is based on fractal dimension:13-15

𝑈𝑘

𝑈0
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)𝐷𝑠𝑒𝑑 (S13)

where  is the sedimentation velocity of primary particles [LT-1] and  is the sedimentation  𝑈0 𝐷𝑠𝑒𝑑

exponent which can be expressed in terms of fractal dimension of aggregates via various empirical 

relationships.14 The most frequently-used expression is:15, 16

𝐷𝑠𝑒𝑑 = 𝐷𝑓 ‒ 1 (S14)

 is the settling velocity for primary particles [L T-1], and can be determined from the Stokes’ 𝑈0

equation:17 
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where  is the gravitational acceleration,  is density of primary particles, [ML-3], and  is 𝑔 𝜌0 𝜌𝑤

density of water [ML-3]. Combination of these equations yields:12 
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Details of the MATLAB code for simulating the aggregation and sedimentation of 

nanoparticles. 

The primary particle size is used as the first bin size in the aggregation modeling process. 

Additionally, this primary particle radius, , is used in the calculations of sedimentation velocity 𝑎0

and collision rates. We assume this size as the minimum of the following two sizes:

a. The minimum initial hydrodynamic diameter observed among different experimental 

cases. This size is 90 nm for SGO used in the present study. 

b. The minimum size of the PSD bins which has a non-zero concentration in the initial-

measured PSD, i.e., PSD at time zero. This size varies among different cases with different 

initial PSDs. 
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A mass- or solid volume-weighted geometrical mean approach is used to calculate the average 

diameter of PSD produced by the model at different times.18 This geometric mean diameter, Dgeom, 

is as follows:
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where  is the mass concentration in each bin and d is aggregate size class diameter. To convert 𝐶

this average size to the hydrodynamic size, we determined the ratio of the initial experimental 

hydrodynamic size to the model-calculated geometric mean size (RH/Rg). Then this ratio is utilized 

to convert all the geometric mean sizes over the duration of simulation to the hydrodynamic size 

that can be used as model output for comparing with observed hydrodynamic size data.19

The solid volume of each bin, is obtained from the size of each bin following:12
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where  and  are the diameters of primary particle and the aggregates size class k. The mass of 𝑑0 𝑑𝑘

aggregates in each size class, , is determined from:12 𝑚𝑘

𝑚𝑘 = 𝜌0 𝑣𝑘 (S19)

An explicit forward Euler scheme was used to solve the governing equation of aggregation (Eq. 

9):20

𝑛𝑘,𝑡 = 𝑛𝑘,𝑡 ‒ ∆𝑡 + ∆𝑡
𝑑𝑛𝑘,𝑡 ‒ ∆𝑡

𝑑𝑡
(S20)

where  is the time discretization interval. The model by default considers the bin size distribution ∆𝑡

that is also used by the DLS instruments, Malvern ZetaSizer, Nano ZS model, UK. Further 

information regarding the adjustment of  is available in the previous report.19 The models were ∆𝑡

already19 validated against analytical solution of the aggregation model in two types of initial 

conditions. 
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Parameter estimation algorithm. To calibrate the parameters of the model, which comprise of 

attachment efficiency and fractal dimension, a heuristic optimization algorithm developed in the 

previous study19 was used here too. This algorithm has two advantages: (1) it can deal with 

potential stability problems of the numerical code and (2) it utilizes the parallel computational 

capability more efficiently in the calibration process. In brief, this algorithm consists of two major 

loops. In the first loop the Nash-Sutcliff ,21 as an objective function, is elevated iteratively until 𝑅2

the difference between  in two successive iterations is below 0.1. In the second loop, the similar 𝑅2

procedure is pursued with more refined parameter increments until the difference between  in 𝑅2

two successive iterations reaches below 0.01. In each loop, the parameter values are multiplied by 

a series of 5 factors, and the model is run for each value. The multiplication which results in the 

best  is exerted in the next iteration. It is important to note that in each iteration only one 𝑅2

multiplication which results in the best  among all multiplications in the two parameters is 𝑅2

selected for the next iteration. In other words, only one parameter can be changed in each iteration. 

The stability issue of the explicit numerical code was mostly arisen when a combination range of 

the two parameters led to very high rate of aggregation and low rate of sedimentation which cannot 

occur in realistic experimental conditions but could be encountered in the automatic parameter 

calibration process. For these cases the optimization algorithm, acting as a ‘master’ model, was 

designed to decrease the time step of the numerical code, acting as a ‘slave’ model, if this goes 

unstable. Additionally, the scheme considers if after three increments in the time step size the 

model was still unstable, the optimization algorithm skipped that multiplication of the parameter 

value. 

Unlike the other automatic calibration schemes in which noise or instability issues can hinder the 

calculation of parameter gradients,22, 23 in the present approach, skipping the unstable runs could 

not prevent finding the final optimum parameter values. Similar to other optimization techniques,24 

feeding the model with appropriate initial values of parameters was important, especially, the 

model should be stable in the initial values of parameters fed to the optimization model. This stable 

initial condition causes the optimization model goes ahead without being hindered by unstable 

runs. This is because a factor of one is among the five parameter value multiplications, and thus 

from the beginning to the end of the parameter calibration process always there is at least one set 

of parameter values for which the model produces correct outputs. If the increments in the first 
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major loop met the requirement of the loop or fail to find any stable solution, then the optimization 

procedure proceeds to the second loop. In this loop, more refined multiplications enhance the fit 

and a greater chance of finding a stable solution is offered since the parameters adopt closer values 

to the stable ranges. The ability of the parallel runs of the model for incremented parameter values 

is believed to enhance the total run time significantly. 

It should be noted that Nash-Sutcliff  might not perform very well as an objective function. 𝑅2

Especially, we noticed that when the distance of the data points with the horizontal axis is small, 

even though visually a good match is achieved between the two graphs of the observation and 

modeled data, Nash-Sutcliff  is not showing a value close to one as expected to show. This can 𝑅2

cause difficulty for the optimization code to find the best set of parameters in such cases. Yet we 

found that with reducing the criteria of difference in two successive iterations (e.g., from 0.1 to 𝑅2

0.001 in the first loop), the algorithm was still able to find the optimum parameter values in such 

cases. In future uses this objective function can be simply replaced with sum of squared errors 

(SSR) which should be minimized within the optimization process.  

Figures and Tables:
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Figure S1. The experimental setup used in this work (a) and an enlarged photograph of the 
cylinder (b). The diameter of the cylinder shown in the panel (a) is 8.2 cm which was 
manufactured for initial trials of the investigation while that shown in panel (b) is 
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Figure S2. Experimental photos of the cylinder (acyl=2.5 cm) rotating at 4.71 rph corresponding 
to Re=0.91 after Methylene Blue injection.
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Figure S3. (a) The rotational component of velocity and (b) shear rate vs distance from the 
centre of the cylinder for the cylinder at different times.
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Figure S4. Velocity vectors for various Df and particle radii. 
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Figure S5. Experimental photos of SGO aggregation over longer times for the case of rotating 
cylinder filled with SGO NP in 0.75 mM CaCl2 solution and pH 6.

Figure S6. Variation of nondimensionalized collision frequency calculated for collision between 
particles/aggregates with radii 50 (a), 500 (b), or 2000 (c) nm with all other particle size classes 
for different fractal dimensions. Other input parameters of the aggregation model assumed as: 
attachment efficiency α=1, particle density 1800 Kg/m3, and shear rate G=0.  is the 𝜏
characteristic time of aggregation 25 and n0 is the initial population of particles. 
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Table S1. Parameter values estimated in the fitting process together with Nash-Sutcliff 
goodness-of-fit criterion, R2

NS. 

Ionic strength Condition α Df R2NS
0.5 control 7.0E-06 1.36 0.709

static 1.0E-05 1.38 0.433
dynamic 4.9E-05 1.53 0.814

0.75 control 6.5E-04 1.34 0.870
static 1.1E-03 1.82 0.776
static 1.2E-04 1.40 0.960
dynamic 1.4E-03 2.06 0.578
dynamic 6.8E-03 2.63 0.921
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