Supporting Information

Dispersed Transition Metal on Nitrogen Doped Carbon Nanoframework for Environmental Hydrogen Peroxide Detection

Zehui Li,^{a,†} Yuheng Jiang,^{b,†} Chenming Liu,^{c,*} Zhuoya Wang,^d Zhiqin Cao,^c Yi Yuan,^d Mingjie Li,^e

Yaling Wang,^a Daliang Fang,^b Zhuang Guo,^b Guangjin Zhang,^c Dongbin Wang,^a and Jingkun Jiang^{a,*}

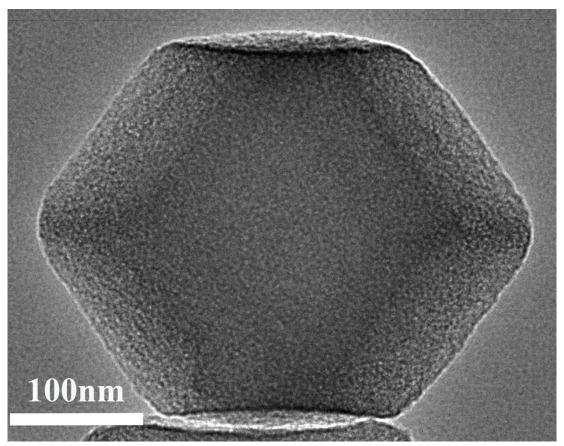


Figure S1. SEM images of N/C.

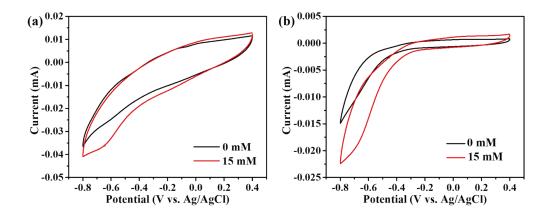


Figure S2. CVs of (a) 1% Cu-N/C and (b) 1% Mn-N/C in N2-saturated 0.4 M PBS (PH=7.0) with 0 and

15 mM H₂O₂.

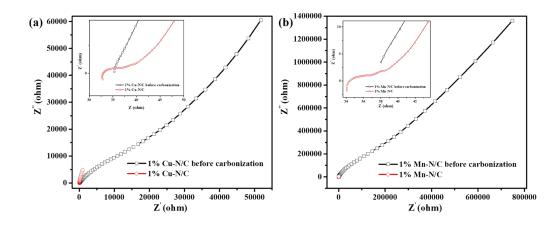


Figure S3. EIS of (a)1% Cu-N/C and (b) 1% Mn-N/C before and after carbonization in N₂-saturated 0.4 M PBS (PH=7.0).

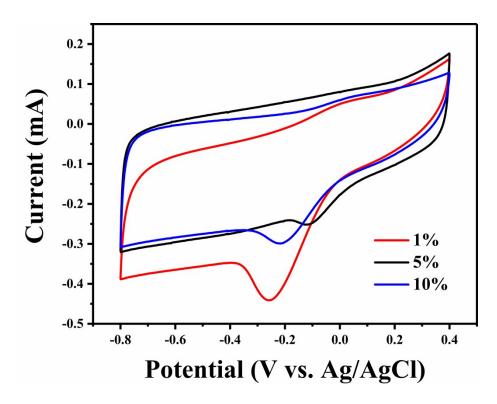
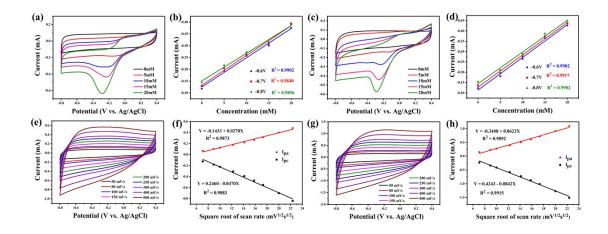



Figure S4. CVs of 1% Mn-N/C, 5% Mn-N/C, 10% Mn-N/C in N2-saturated 0.4 M PBS (PH=7.0) with 15

mM H₂O_{2.}

Figure S5. CVs of (a) 1% Cu-N/C and (c) 1% Mn-N/C electrodes in N₂-saturated 0.4 M PBS (PH=7.0) with different concentrations of H_2O_2 (0, 5, 10, 15 and 20 mM). Calibration curve of the amperometric response to the concentration of H_2O_2 from 0 mM to 20 mM at different negative potential (-0.6, -0.7 and -0.8 V) for (b) 1% Cu-N/C and (d) 1% Mn-N/C. CVs of (e) 1% Cu-N/C and (g) 1% Mn-N/C electrodes in 1 mM H_2O_2 solution with different scanning rate (50, 80, 100, 150, 200, 250, 300, 400 and 500 mV/s). Calibration curve of the amperometric response to the square root of scan rate for (f) 1% Cu-N/C and (h) 1% Mn-N/C.

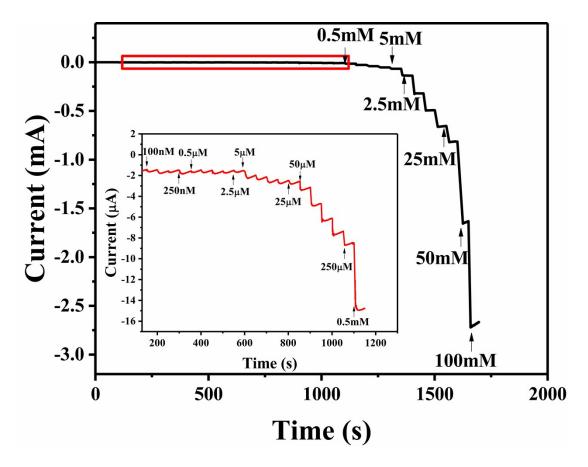


Figure S6. Chronoamperometric curves of 1% Mn-N/C with the successive addition of H_2O_2 in PBS at an applied potential of -0.7 V.

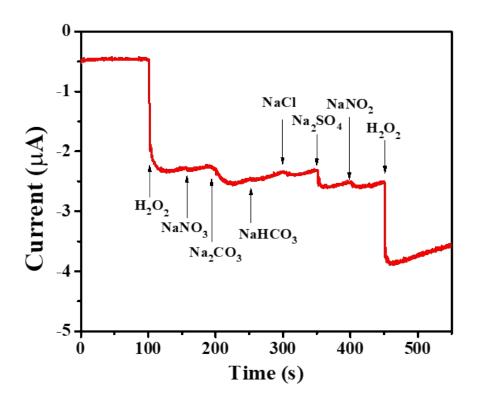


Figure S7. Chronoamperometric curves of 1% Mn-N/C electrode in a 0.1 M PBS buffer (pH=7) with the successive addition of 0.1 mM H_2O_2 , NaNO₃, Na₂CO₃, NaHCO₃, NaCl, Na₂SO₄, NaNO₂ and H_2O_2 with a potential at -0.7 V.

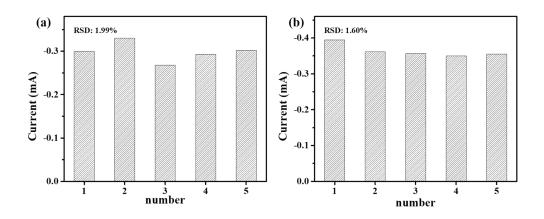


Figure S8. Current responses of five (a) 1% Cu-N/C and (b) 1% Mn-N/C modified GCEs to 10 mM H_2O_2 at -0.7 V.

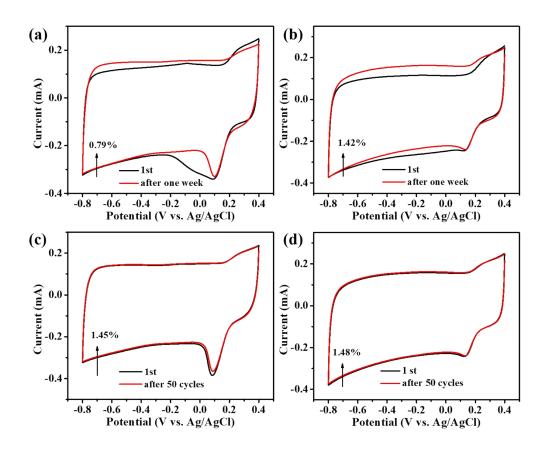


Figure S9. CV curves of (a) 1% Cu-N/C and (b) 1% Mn-N/C before and after one week in PBS solution

with 15 mM H_2O_2 . CV curves of (a) 1% Cu-N/C and (b) 1% Mn-N/C before and after 50 cycles of CV.

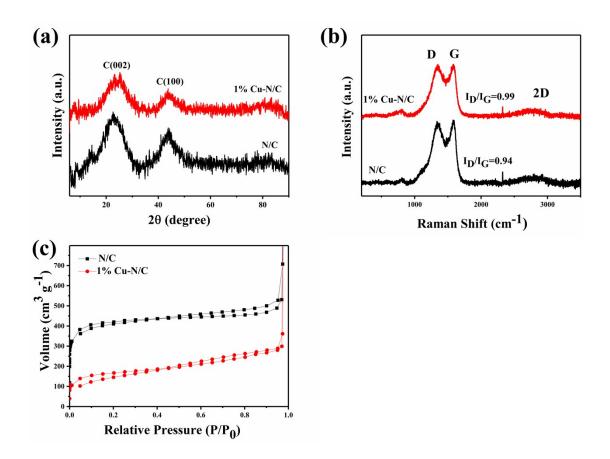


Figure S10. (a) XRD patterns (b) Raman spectra of N/C and 1% Cu-N/C and (c) N_2 adsorption–

desorption isotherms.

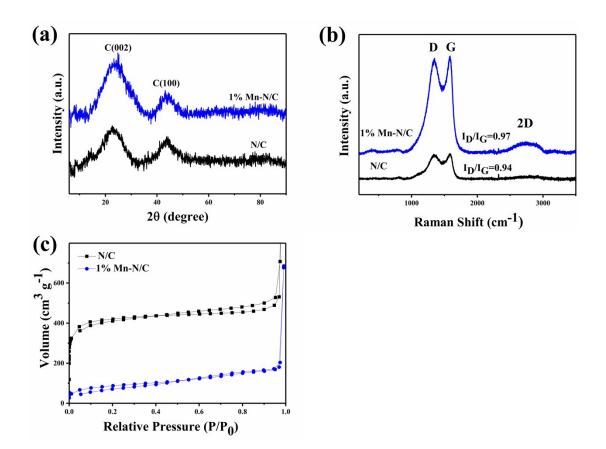


Figure S11. (a) XRD partterns (b) Raman spectra of N/C and 1% Mn-N/C and (c) N_2 adsorption-desorption isotherms.

Materials	Porosity parameter									
	S _{BET}	V _t	V _{mic}	V_{mic}/V_t						
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	(%)						
N/C	1613.82	0.87	0.54	62.07						
1% Cu-N/C	616.77	0.47	0.18	38.30						
1% Mn-N/C	311.15	0.28	0.08	28.57						

Table S1. Pore structure parameters of N/C, 1% Cu-N/C and 1% Mn-N/C.

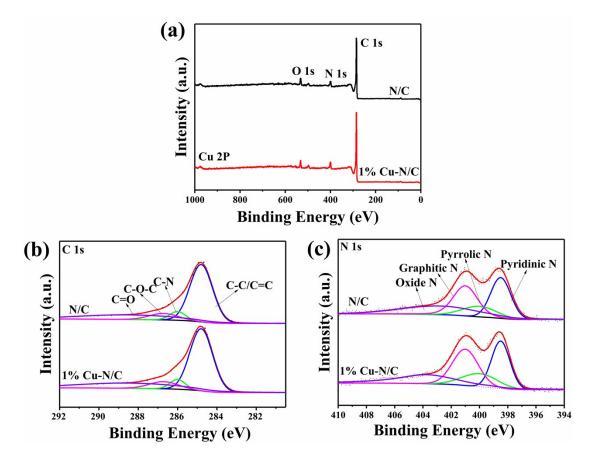


Figure S12. (a) XPS full spectra and high-resolution XPS spectra of (b) C 1s, (c) N 1s for

NC and 1% Cu-N/C.

Materials	Elemental composition (at %)			C (at %)			N (at %)			Cu (at %)		Mn (at %)					
	C 1s	N 1s	O 1s	Cu 2p	Mn 2p	C- C/C=C	C-N	C-O-C	С=О	pyridi nic-N	pyrrol ic-N	graphi tic-N	Oxide -N	Cu ⁰	CuⅡ	Mn	Mn^{II}
N/C	85.57	8.49	5.31	-	-	53.11	5.62	7.51	19.34	2.60	1.14	2.56	2.19	-	-	-	-
1% Cu-N/C	86.71	8.56	4.07	0.26	-	51.70	6.55	7.71	20.75	2.46	1.30	2.72	2.08	0.14	0.16	-	-
1% Mn-N/C	86.83	8.38	4.23	-	0.22	50.73	8.29	8.17	19.63	2.25	1.75	2.54	1.83	-	-	0.16	0.06

Table S2. Elemental content and percentage of C, N, Cu and Mn species of N/C, 1% Cu-N/C and 1% Mn-N/C from XPS.

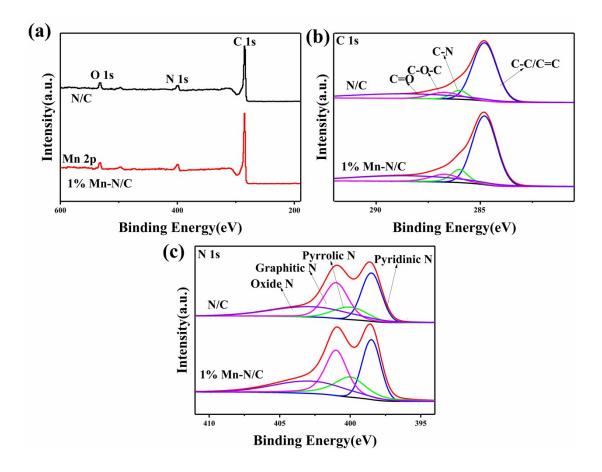


Figure S13. (a) XPS full spectra and high-resolution XPS spectra of (b) C 1s, (c) N 1s for 1% Mn-N/C.