Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Table S-1. ENMs used in case study. ENM = engineered nanomaterial; NP = nanoparticle; NA = not available or applicable; *Reported from commercial supplier

ENM (NPs)	Size/ NP Diameter * (nm)	Specific Surface Area * (m²/g)	Volume/ Mass/ Quantity Available* (g)	Price* (\$)	Supplier	Commercial Name by Supplier	Product ID
Al	60-80	NA	NA	116 (25g); 356 (100 g)	Alfa Aesar	Aluminum powder, spherical, APS 60-80nm	45546
Al ₂ O ₃	60	NA	25	NA (Already in NC State inventory)	C Alfa Aesar Aluminum oxide, 99.9%		
CuO	30-50 13 50 34.7 (10g); 107 (50g) Alfa Aesar Copper (II) oxide, nanopowder		44663				
Fe ₂ O ₃	3	250	250	143 (50g); 547 (250g); 1592 (1kg)	Alfa Aesar	Iron (III) oxide, nanopowder, 99.95%	44119
MgO	100	>7.3	500	45.80 (25g); 135 (100g); 523 (500g)	Alfa Aesar	Magnesium oxide, nanopowder, 99+%	44733
MnO ₂	50	NA	100	65 (25g); 135 (100g); 428 (500g); 685 (1kg)	NPs synthesized in NC State lab (grown on nanofibrous filter media); Can also be purchased ¹	Manganese dioxide MnO ₂ nanoparticles (MnO ₂ , 98%, 50nm)	US3319 ¹
TiO₂ (anatase)	15	240	500	64.10 (25g); 146 (100g); 477 (500g)	Alfa Aesar	Titanium (IV) oxide, anatase, nanopowder, 99.7%	045603
ZrO ₂	<100	>25	25	31.75 (5g); 112 (25g)	Sigma-Aldrich	Zirconium (IV) oxide, nanopowder, <100 nm particle size (TEM)	544760

Table S-2. NanoRiskCat Steps^{2, 3}

Category	Step	Details
Problem Definition	1. Short titles for use scenario(s) and ENM identification	 ENM-enabled product clearly described in short title, defining the type of ENM(s) used, and intended use
Exposure	2. Exposure potential assessment	 User assesses potential exposure according to the location of the ENM in the product (e.g., ENM used on a structured surface, NPs suspended in liquids, NPs suspended in air, etc.) based on Hansen et al.⁴ If high exposure potential (e.g., NP suspended in liquid matrix intended for direct skin contact) a red dot triggered; if medium exposure a yellow dot triggered; if low exposure (e.g., NP suspended in solid matrix with very low potential for release) a green dot triggered; if unknown a grey dot triggered; Same procedure performed for professional end-users, consumers, and environmental recipients
Human Hazard	3. Decision tree for potential human health hazard assessment	 Decision tree based on the following nodes: ENM classification as High Aspect Ratio Nanoparticle (HARN)? ENM in bulk form known or suspected to cause of serious detrimental effects based on EU's Regulation NO 1272/2008 (CLP Legislation⁵), such as e.g. acute toxicity category 1-4; germ cell mutagenicity category 1A, 1B, or 2, carcinogenicity category 1A, 1B, or 2, etc.? ENM in bulk form classified for less severe effects based on EU's CLP Legislation, such as e.g., skin corrosion/irritation, specific target organ toxicity-single exposure category 3, serious eye damage/irritation category 2? ENM induce acute toxicity? ENM cause other serious effects, e.g., genotoxic, mutagenic, carcinogenic, respiratory, cardiovascular, neurotoxic, reproductive effects? If "yes" to any of these questions, a red (high hazard potential) colored dot will be triggered; if "maybe" or inconclusive evidence but gives cause for concern a yellow (medium hazard potential) colored dot triggered; if "no" a green dot (low hazard potential); and if unknown or insufficient data a grey dot triggered
Ecological Hazard	4. Decision tree for potential ecological hazard assessment	 Decision tree based on the following nodes: ENM in bulk form known or suspected to cause of serious detrimental effects based on EU's Regulation NO 1272/2008 (CLP Legislation⁵), such as e.g. acute 1 or chronic 1 and chronic 2 and level B CLP classifications.? Is the ENM LC50 ≤10 mg/L? ENM in bulk form classified for less severe effects based on EU's CLP Legislation, such as e.g., significant effect of ENM without EC50 or LC50 values? Is the ENM LC50 ≤100 mg/L? Does the ENM have a half-life > 40 days? Does the ENM have a bioconcentration factor >0.1 or > 50? Does the ENM readily disperse or have long range transport in the environment? Is the ENM novel? If "yes" to any of these questions, a red (high hazard potential) colored dot will be triggered; if "maybe" or inconclusive evidence but gives cause for concern a yellow (medium hazard potential) colored dot triggered; if "no" a green dot (low hazard potential); and if unknown or insufficient data a grey

Category	Step	De	tails
			dot triggered
Generated	5. Compile	•	User compiles the color-coded dots from the exposure potential for
Output	results		professional end-users, consumers, and environmental recipients (Step 2)
			and hazard potential for humans and environment (Steps 3-4);
		•	End result is five color-coded dots for communication

Table S-3. LICARA nanoSCAN Steps⁶. The outlined steps are included in the 9 different tabs within the web-based tool.

Category	Step	Details
Welcome	1. Introduction	 Welcome page to LICARA nanoSCAN Introductory information on overall scope and purpose of tool User can view overall framework, including the different components used in the tool evaluation User can start a new evaluation ("nanoSCAN") under "Start nanoSCAN" or can view, load, edit, or remove saved evaluations under "Your nanoSCANs"
Problem Definition	2. Start	 User provides identifying information on the nanoproduct, including name and date Scenario can later be saved using this name and identifying information
	3. Nano product	 Box 0. Nano product and legislation User responds to questions using drop-down menus and blank comment fields within three groups: "Type of nano material and application," "Nano-relevance," and "Legislation" There are 12 questions total This Box helps the user determine whether LICARA nanoSCAN is a relevant tool (i.e. ENM-relevance) and checks the compliance of the nanoproduct with current European regulation
Benefit Evaluation	4. Environmental benefits	 Box 1. Environmental benefits All questions relate to the performance of a nanoproduct compared to a conventional product User responds to questions using drop-down menus within three groups: "Manufacturing phase of the nanoproduct versus conventional product," "Use phase (only for final products and articles)," and "End-of-life (only for final products and articles)"; the latter two groups may be completed for intermediate nanoproducts to help improve quality of decision-making There are 20 questions total
	5. Economic benefits	 Box 2. Economic benefits All questions relate to the performance of a nanoproduct compared to a conventional product User responds to questions using drop-down menus within three groups: "Market potential," "Profitability," and "Development stage" There are 5 questions total
	6. Societal benefits	 Box 3. Societal benefits All questions relate to the performance of a nanoproduct compared to a conventional product User responds to questions using drop-down menus within three groups: "Technological breakthrough," "Highly qualified labour force,"

Category	Step	Details					
		and "Improving global health or food situation"					
		There are 3 questions total					
Risk	7. Public and	Box 4. Public health & environmental risks					
Evaluation	environmental	• All questions based on Precautionary Matrix ⁷					
	risks	 User responds to questions using drop-down menus within three groups: "System knowledge," "Potential effect," and "Potential input into the environment" There are 9 questions total 					
	8. Occupational	Box 5. Occupational health risks					
	health risks	 User is directed to Stoffenmanager Nano 1.0⁸ which is a separate web- based tool. After accessing the site, the user needs to create an account and log in 					
		 User starts a new evaluation (termed "risk assessment") 					
		 User responds to questions using drop-down menus and blank comment fields within six steps: 1. General, 2. Product characteristics, 3. Handling/Process, 4. Working area, 5. Local controls measures and personal protective equipment, 6. Risk assessment There are 27 questions total 					
		 The output in the final step is a summary of calculated exposure-hazard- class and risk scores in the Risk Assessment step 					
		• User can save the evaluation, export the results, and return to the evaluation if needed					
		• Returning to LICARA nanoSCAN, the user enters the final task weighted hazard class (e.g. C) and exposure class (e.g. 2) scores from the Stoffenmanager Nano 1.0 evaluation in a matrix (e.g. C2) under the appropriate life cycle stage (i.e., manufacture, processing, application)					
	9. Consumer risks	Box 6. Consumer health risks					
		• Relevant only for consumer or consumer/professional products, based on exposure potential using Hansen et al. ⁴ framework and NanoRiskCat exposure profile ⁹					
		 User responds to questions using drop-down menus within one group: "Hazard & exposure by consumers during use phase" There are 2 questions total 					
Generated Output	10. Decision support	 Final generated output displayed according to separate benefit and risk evaluations as well as a combined benefit-risk evaluation User can name and save the evaluation (nanoSCAN) 					

Table S-4. NanoGRID Steps¹⁰. The outlined steps are included in the 5 different tabs within the MS-excel tool.

Category	Step	Details
Welcome	1. Home tab	Welcome page to NanoGRID
		Overall framework of NanoGRID
		• User can start a new evaluation ("profile") under "Start" button or can
		view, load, edit, or remove saved evaluations
Problem	2. ENM and ENM-	• Tier 1. Basic Information, Technology Category, and ENM Definition
Definition	product	• Tier 1 helps the user determine whether the ENM is of concern, if ENM-
	description	specific test and methods are required (or if conventional chemical risk
		assessment methods would be suitable), and if Tiers 2-5 are necessary

Category	Step	Details
		 to complete to characterize the environmental, health, and safety concerns of the ENM User responds to questions or selects applicable options using drop-
		down menus, radio buttons, and blank comment fields within four tabs: "Basic information," "Technology Category," "Nanomaterial Definition," and "Special Properties"
		 "Basic information" tab has three sub-tabs: "Instructions," "Initial questions," and "Technical questions" that ask the user about the ENM, its properties, and how it is used in a product.
		 "Technology category" characterizes the location of the ENM in a product following Hansen et al.⁴; "Nanomaterial Definition" describes the ENM based on physico-chemical properties (i.e., ENM definitions used by regulatory agencies, size, aggregation, specific surface area, and unique/novel properties); "Special Properties" described the ENM based on special or unique properties correlated with environmental, health, or safety hazards (e.g., shape, charge, reactivity, dustiness, porosity) There are a maximum of 42 questions or options to select in Tier 1
Exposure	3. Release potential	 Tier 2. Release, Hazard Identification, and Testing Identification Tier 2 helps the user understand the release potential of the ENM from the ENM-enabled product, whether additional testing is needed to characterize potential risks/concerns, and helps the user better understand the release of ENM through various assumptions or laboratory-based tests
		 User responds to questions or selects applicable options using drop- down menus, radio buttons, and blank comment fields within three tabs: "Release," "Hazard Identification," and "Testing Identification" "Release" characterizes the release of the ENM from the product, based on Hansen et al.⁴, and describes a release scenario (e.g., release of 100% of ENM from product), also in reference to known hazard concentrations (three options); "Hazard Identification" screens the ENM for potential environmental and human health hazards
		 Predicted Environmental Concentration (PEC) can be estimated using the SimpleBoxforNano¹¹, Mend Nano¹², or existing values from the literature
		• Predicted No Effect Concentration (PNEC) is estimated using existing values from the literature, as calculated using choice of two approaches (US Army Method vs. EU ECHA Method ^{13,14}). For these values, the user enters acute and/or chronic data
		 If the PEC/PNEC < 1, no risk is expected; if PEC/PNEC > 1, a potential risk cannot be dismissed or neglected, and the user is guided to Tier 3 There are a maximum of 15 questions or entions to select in Tier 2
	4. Environmental	 There are a maximum of 15 questions or options to select in Tier 2 Tier 3. Environmental fate and persistence of ENMs in aqueous media
	persistence testing	• Tier 3 guides the user through various laboratory-based tests to understand the environmental fate and persistence of ENMs in aqueous media
		 User responds to questions, selects applicable options, or fills in blank comment fields in four main tabs, Levels 1-4, that correspond to different ENM fate and persistence tests the user can perform
		 Level 1 is an initial description of the media and ENM concentration; Level 2 is an initial characterization of ENM size and surface charge; Level 3 is a test of particle stability and dissolution over time; and Level

Category	Step	Details
		 4 evaluate the results variability to provide further guidance and testing if needed There are a maximum of approx. 20 questions or options to select in Tier 3, depending on the number and behavior of concentrations selected
Hazard	5. Environment and health hazard testing	 Tier 4. Aquatic, Terrestrial, Human Health hazard data Tier 4 guides the user through various laboratory-based tests to understand environmental health and/or human health hazard assessment related to the ENM User responds to questions or selects applicable options using drop-down menus, radio buttons, and blank comment fields within three main tabs: "Aquatic," "Terrestrial," "Human Health" (not yet functional) In each tab, the user has the possibility to choose between "acute," "chronic," and "elutriate" toxicity tests for a maximum of two organisms by test type and three endpoints by organism User has direct access to toxicity protocol link For each toxicity test type (e.g. acute) NanoGRID calculates the PEC/PNEC ratio There is a large number of questions or options that are possible (~100) for the user to select in Tier 4, depending on the number of test, organism and endpoints selected
	6. In depth product investigation	 Tier 5. In Depth Product investigation Not yet available in current version
Generated Output	7. Decision Support	 After completing all necessary Tiers, user can click on "Generate Report" to produce the final output pdf file Final report provides an overview of the evaluation according to each tier and guidance towards testing that may be needed related to the selected ENM
	8Credit/Point of Contact	 Contact information for individuals who contributed to the NanoGRID development according to subject matter expertise, technical development, and technical coordination (N=14)

ENM (NP)	Exposure Potential		Hazard Evaluation	Hazard Evaluation			
	Professional End-User	Consumers	Environment	Health	Ecological		
AI	High: Due to dry, loose state of NPs as purchased fromMedium: Due to loose (unbound) state of NPs 		Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	Medium: Cytotoxicity studies ¹⁵⁻¹⁷ ; irritation ¹⁸⁻¹⁹ ; pulmonary disease ²⁰	High: EC50, 4.7 μg/mL ¹⁶ ; LD50 (48h), 7.483 mg/L ²¹		
Al ₂ O ₃	High: Due to dry, loose state of NPs as purchased from supplier and handled by end-users in laboratory settings	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	High: Inflammatory effects ²² ; expression of neuro-degeneration related genes ²³ ; impacts on lung, brain, liver, kidneys, intestines ²²⁻²⁴	High: EC50 (72h), 0.162 mg/L ²⁵ ; EC50 (48h), 114.357 (mg/L) ²⁶ ; LC50 (48h), 162.392 mg/L ²⁶ ; some indications of persistency ^{9, 27}		
CuO	High: Due to dry, loose state of NPs as purchased from supplier and handled by end-users in laboratory settings	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	High: Cytotoxicity and DNA damage, intracellular reactive oxygen species (ROS) generation, DNA lesions ^{28, 29} ; respiratory irritation ³⁰	High: High ecotoxicity with long lasting effects ³¹ ; EC50, 0.46 mg/L - >250 mg/L values reported ³² ; EC50 (72h), 0.71 mg/L, NOEC, 0.421 mg/L ³³ ; LC50 (48h), 3.2 mg/L, LC50 (24h), 2.1 mg/L, NOEC (48h), 0.5 mg/L, NOEC		

Table S-5. Detailed results from NanoRiskCat applied to ENMs in case study. ENM = engineered nanomaterial; NP = nanoparticle.

ENM (NP)	Exposure Potential		Hazard Evaluation			
. ,	Professional End-User	Consumers	Environment	Health	Ecological	
		treatment application			(24h), 0.5 mg/L ³⁴	
Fe ₂ O ₃	High: Due to dry, loose state of NPs as purchased from supplier and handled by end-users in laboratory settings	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	High: Accumulation in brain, liver, kidneys ³⁵⁻³⁷ ; inflammatory effects ³⁸ ; severe damage in liver and lungs; tumorigenic effects ³⁹	High: LC50, 53.35 mg/L ⁴⁰ ; LC50, 99.064-259.956 mg/L ⁴¹ ; Potentially persistent and not likely to be transported in environment ^{9, 42}	
MgO	High: Due to dry, loose state of NPs as purchased from supplier and handled by end-users in laboratory settings	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	High: Serious eye damage; eye, skin, respiratory irritant ⁴³	High: Very toxic to aquatic life with long-lasting effects ⁴³ ; LC50 (96h), 428 mg/L, EC50 (48h), 175 mg/L ⁴⁴	
MnO ₂	Medium: Due to NPs grown on nanofibrous filter media by NC State researchers. The NPs are grown on surfaces of fibers, attached to fibers, as demonstrated by sonification experiments by NC	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	High: Acute Tox 4, Harmonized classification, Annex VI of Regulation EC No 1272/2008 (CLP) ⁴⁵	High: EC50, 10-100 mg/L ⁴⁶	

ENM (NP)	Exposure Potential			Hazard Evaluation	
	Professional End-User State. No release studies performed however from the nanofibers containing MnO ₂ NPs	Consumers	Environment	Health	Ecological
TiO ₂	High: Due to dry, loose state of NPs as purchased from supplier and handled by end-users in laboratory settings	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	High: Suspected human carcinogen for inhalation, (Carc. 2; H350 ⁴⁷	High: EC50 (72h), 1.3-3.44 mg/L ⁴⁸ ; EC50 (72h), 3.8 mg/L ⁴⁹ ; EC50 (48h), 8.26 mg/L ⁵⁰ ; other LC50 values < 10mg/L ³²
ZrO ₂	High: Due to dry, loose state of NPs as purchased from supplier and handled by end-users in laboratory settings	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	Medium: Due to loose (unbound) state of NPs used in water treatment application (hypothetical at this stage of innovation). Cannot rule out that NPs will not be released from water treatment application	Medium: Conflicting findings; from no/low toxicity ^{51, 52} to neuronal developmental toxicity, behavioral changes, impacts on reproduction, and some cytotoxicity and genotoxicity ⁵³⁻⁵⁵ ; Bulk ZrO2 may cause irritation (eyes, skin, ingestion, inhalation) ⁵⁶	Low: No ecotoxicity effects reports; not considered to be persistent, bioaccumulative, or toxic ⁵⁶⁻⁵⁸

Table S-6. Detailed results from LICARA nanoSCAN applied to ENMs in case study. ENM = engineered nanomaterial; NP = nanoparticle; NA = not available or applicable. Note: the questions listed below are slightly abbreviated questions from the LICARA nanoSCAN methodology for brevity reasons.

	LICAR	A nanoSCAN questions	Al	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
	Type of ENM and application	0.1. Which ENM will be used? Please specify additional ENM subtype or indications / properties:	Other; Al NP; 60- 80nm	Other; Al2O3 NP; 60nm	Other; CuO NP; 30-50nm	Iron NPs; Fe2O3 NP; 3nm	Other; MgO NP; 100nm	Other; MnO2 NP; 50nm	Titanium dioxide (TiO2); anatase, 15nm	Other; ZrO2 NP; <100 nm
		0.2. In which type of application is the ENM used?	Water / waste water treatment	Water / waste water treatment						
E		0.3a. Is this a completely new product with a new functionality?0.3b. If not, what conventional product is being replaced?	No	No						
id legislatio		0.4. The product under evaluation is: (for consumer use, for professional use, etc.)	Professio nal market only	Professio nal market only						
Box 0. Nano product and legislation		0.5. What is the main function that the ENM provides?	Water treatment ; phosphat e removal	Water treatment ; phosphat e removal						
ix 0. Nan		0.6. What is the appropriate unit to compare the nanoproduct with the conventional product?	1kg	1kg						
Bo	Nano- relevance	0.7. Approach 1 (precautionary approach): Ranges of sizes of primary particles contained in the ENM?	1-500nm	1-500nm						
	rele	0.8. Approach 2 (EU-proposed definition 2011/696/EU)	Yes	Yes						
		0.9. Are you aware of existing legislation (e.g. EU REACH)	Yes	Yes						
	tion	0.10. Is your ENM approved or notified according to relevant EU-legislation (e.g. EU REACH)	Yes	Yes						
	Legislation	0.11. Do you use the ENM below its specific concentration limits recommended in the legal framework?	Yes	Yes						
Box 1.	Mai	1.1. Energy consumption of manufacturing process?	Worse ^{59,} 60	Better, as NPs	Worse ^{59,} 60	Worse ^{59,} 60				

LICAI	RA nanoSCAN questions	Al	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
	Note: conservative potential proxies (macro/micro scale powders) were used to check if energy use were worse for the ENMs than activated carbon						grown on non- woven fibers		
	1.2a. Materials consumption in manufacturing process?1.2b. Amounts of hazardous substances used in manufacturing?	Worse; Worse ^{59,} ⁶⁰	Better, as NPs grown on non- woven fibers; Unknown	Worse; Worse ^{59,} ⁶⁰	Worse; Worse ^{59,} ⁶⁰				
	1.3. Efforts needed to produce product using the ENM?	Worse ^{59,} 60	Better, as NPs grown on non- woven fibers	Worse ^{59,} 60	Worse ^{59,} 60				
phase	 1.4a. Amount of solid waste from manufacturing process? 1.4b. Amount of wastewater from manufacturing process? 1.4c. Emissions to air or (waste)water from manufacturing process? Note: conservative potential proxies (macro/micro scale powders) were used to check if energy use were worse for the ENMs than activated carbon 	Worse; Worse; Worse ^{59,} ⁶⁰	Better, as NPs grown on non- woven fibers; Unknown ; Unknown	Worse; Worse; Worse ^{59,} ⁶⁰	Worse; Worse; Worse ^{59,} ⁶⁰				
	1.5. Product lifetime (use phase)?	Better, assumed from research team	Better, assumed from research team	Better, assumed from research team	Better, assumed from research team	Better, assumed from research team	Better, assumed from research team	Better, assumed from research team	Better, assumed from research team
Use phase	1.6a. Need for maintenance? 1.6b. Amounts of hazardous substances used in maintenance?	Equal; Equal, assumed from research team	Equal; Equal, assumed from research team	Equal; Equal, assumed from research team	Equal; Equal, assumed from research team	Equal; Equal, assumed from research team	Equal; Equal, assumed from research team	Equal; Equal, assumed from research team	Equal; Equal, assumed from research team
Envi me	1.7a. Amounts of hazardous substances used in maintenance?1.7b. Amount of solid waste from using	Equal; Equal; Unknown,	Equal; Equal; Unknown,	Equal; Equal; Unknown,	Equal; Equal; Unknown,	Equal; Equal; Unknown,	Equal; Unknown ;	Equal; Equal; Unknown,	Equal; Equal; Unknown

LIC	ARA nanoSCAN questions	Al	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
	product?	assumed	assumed	assumed	assumed	assumed	Unknown,	assumed	assumed
	1.7c. Amount of wastewater resulting	from	from	from	from	from	assumed	from	from
	from use of product?	research	research	research	research	research	from	research	research
		team	team	team	team	team	research	team	team
							team		
	1.8. Efficiency of use?	Better, as	Better, as	Better, as	Better, as	Better, as	Better, as	Better, as	Better, as
		NPs are	NPs are	NPs are	NPs are	NPs are	NPs are	NPs are	NPs are
		often	often	often	often	often	often	often	often
		reported	reported	reported	reported	reported	reported	reported	reported
		to be	to be	to be	to be	to be	to be	to be	to be
		more	more	more	more	more	more	more	more
		reactive	reactive	reactive	reactive	reactive	reactive	reactive	reactive
		than bulk	than bulk	than bulk	than bulk	than bulk	than bulk	than bulk	than bulk
		scale	scale	scale	scale	scale	scale	scale	scale
		materials	materials	materials	materials	materials	materials	materials	materials
	1.9. Volume of waste?	Equal,	Equal,	Equal,	Equal,	Equal,	Equal,	Equal,	Equal,
		assumed	assumed	assumed	assumed	assumed	assumed	assumed	assumed
		from	from	from	from	from	from	from	from
		research	research	research	research	research	research	research	research
		team	team	team	team	team	team	team	team
	1.10a. Amounts of other hazardous	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
	substances released from wastewater	:	:	:	:	:	:	:	:
	treatment?	Únknown	Únknown	, Unknown	, Unknown	Únknown	Únknown	, Unknown	, Unknown
	1.10b. Amounts of other hazardous	•	•						
	substances released during								
	incineration?								
e	1.11. Established recycling systems	Equal;	Equal;	Equal;	Equal;	Equal;	Equal;	Equal;	Equal;
End-of-life	exposed to the ENM in the product?	this is	this is	this is	this is	this is	this is	this is	this is
Ŷ		expected	expected	expected	expected	expected	expected	expected	expected
		to be a	to be a	to be a	to be a	to be a	to be a	to be a	to be a
		minor	minor	minor	minor	minor	minor	minor	minor
		issue for	issue for	issue for	issue for	issue for	issue for	issue for	issue for
		both the	both the	both the	both the	both the	both the	both the	both the
		NP and	NP and	NP and	NP and	NP and	NP and	NP and	NP and
		activated	activated	activated	activated	activated	activated	activated	activated
		carbon	uenvarea	activated		uctivated	uctivated	activated	
	1.12a. Can the wastewater treatment	No ^{61, 62} ;	No ⁶⁴ ;	No ⁶⁴ ;	No ⁶⁴ ;	No ⁶⁴ ;	No ⁶⁴ ;	No ^{61, 65} ;	No ⁶¹ ;
	facility elimination the nanoproduct's	No ⁶³	N0 ⁶³	NO ⁶³	NO ⁶³	N0 ⁶³	No ⁶³	No ^{63, 66}	NO ⁶³
	emissions?								
	1.12b. Can the waste incineration								
	facility eliminate the nanoproduct's								

	LICARA	nanoSCAN questions	AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO₂	TiO₂	ZrO ₂
		emissions?								
	ial	2.1. Does the nanoproduct have increased marketability due to an	Equal, based on	Equal, based on	Equal, based on	Equal, based on	Equal, based on	Equal, based on	Equal, based on	Equal, based on
	ent	improved or new functionality or a	current	current	current	current	current	current	current	current
	ote	clear image advantage compared to	knowledg	knowledg	knowledg	knowledg	knowledg	knowledg	knowledg	knowledg
	it p	conventional product?	e	e	e	e	e	e	e	e
Box 2. Economic benefits	Market potential	2.2. What is the foreseen market potential of nanoproduct or - application in Europe?	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
per		2.3. What is the purchase price per unit	Higher	Higher	Higher	Higher	Higher	Higher	Higher	Higher
lic		of the nanobased product or material	(see Table	(see Table	(see Table	(see Table	(see Table	(see Table	(see Table	(see Table
μο	lity	compared to the conventional one?	S-1)	S-1)	S-1)	S-1)	S-1)	S-1)	S-1)	S-1)
lo	Profitability	2.4. What are the operational costs	Equal,	Equal,	Equal,	Equal,	Equal,	Equal,	Equal,	Equal,
ы Ш	lite	during the use phase of the nanobased	assumed	assumed	assumed	assumed	assumed	assumed	assumed	assumed
× 2	Pro	product or application compared to the	from	from	from	from	from	from	from	from
BO		conventional one?	research	research	research	research	research	research	research	research
			team	team	team	team	team	team	team	team
	E e	2.5. What is the time-to-market to	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium
	op tag	manufacture the nanoproduct on a	(1-<5	(1- <5	(1- <5	(1-<5	(1- <5	(1-<5	(1-<5	(1- <5
	Developm ent stage	commercial scale?	year)	year)	year)	year)	year)	year)	year)	year)
		3.1. Could the use or application of	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;
	l dgr	nanoproduct be considered a	improved	improved	improved	improved	improved	improved	improved	improved
	10	technological breakthrough compared	phosphat	phosphat	phosphat	phosphat	phosphat	phosphat	phosphat	phosphat
	ļ Ļ	to conventional alternative?	e	e	e	e	e	e	e	e
ts	ak		adsorptio	adsorptio	adsorptio	adsorptio	adsorptio	adsorptio	adsorptio	adsorptio
lefi	bre		n capacity	n capacity	n capacity	n capacity	n capacity	n capacity	n capacity	n capacity
ber	a l		compared to	compared to	compared to	compared to	compared to	compared to	compared to	compared to
all) ggic		activated	activated	activated	activated	activated	activated	activated	activated
ciet			carbon	carbon (1-	carbon (1-	carbon (1-	carbon (1-	carbon (1-	carbon (1-	carbon (1-
Soc	Technological break-through		(1-2	2 mg/g)	2 mg/g)	2 mg/g)	2 mg/g)	2 mg/g)	2 mg/g)	2 mg/g)
Box 3. Societal benefits			mg/g)							0.01
ă	7	3.2. Does production of the application	More or	More or	More or	More or	More or	More or	More or	More or
	Highly qualified labour force	lead to a substantial improvement in	less equal	less equal	less equal	less equal	less equal	less equal	less equal	less equal
	Highly ualifie labour force	the development of a highly qualified								
	1 2 2 4	labour force compared to conventional								
		alternative?								

	LICARA	A nanoSCAN questions	AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
	Improving global health or food situation	 A nanoSCAN questions 3.3. Compared to conventional alternative OR Does the use or application of nano-based product lead to improvements in people's health, particularly the direct user, e.g. by improvements in water purity, sanitation or medicines and pharmaceuticals? 4.1. Is the origin of the (ENM) starting materials known? 4.2. Are the next users of the ENM 	Al Yes, case study focused on sustainabl e water treatment solutions Yes (see Table S-1) Yes	Al ₂ O ₃ Yes, case study focused on sustainabl e water treatment solutions Yes (see Table S-1) Yes	CuO Yes, case study focused on sustainabl e water treatment solutions Yes (see Table S-1) Yes	Fe ₂ O ₃ Yes, case study focused on sustainabl e water treatment solutions Yes (see Table S-1) Yes	MgO Yes, case study focused on sustainabl e water treatment solutions Yes (see Table S-1) Yes	MnO ₂ Yes, case study focused on sustainabl e water treatment solutions Yes (see Table S-1) Yes	TiO ₂ Yes, case study focused on sustainabl e water treatment solutions Yes (see Table S-1) Yes	ZrO ₂ Yes, case study focused on sustainabl e water treatment solutions Yes (see Table S-1) Yes
mental risks	System knowledge	known? 4.3. How accurately is material system known or can disturbing factors (e.g. impurities) be estimated? 4.4. Do the ENMs cause redox activity, catalytic activity or have a potential for	Not accuratel y, still in early innovatio n stages Medium ¹⁸ , ¹⁹	Not accuratel y, still in early innovatio n stages Medium ²²	Not accuratel y, still in early innovatio n stages High ^{28, 29}	Not accuratel y, still in early innovatio n stages High ³⁸	Not accuratel y, still in early innovatio n stages High ⁴³	Not accuratel y, still in early innovatio n stages Medium ⁶⁷	Not accuratel y, still in early innovatio n stages High ⁴⁷	Not accuratel y, still in early innovatio n stages Low ^{53, 56}
Box 4. Public health & environmental risks	Potential effect	oxygen radical formation or to induce inflammation reactions? 4.5. What is stability (half-life) of NPs present in the ENM under ambient environmental conditions?	Months, given its water solubility not determin ed ¹⁸	Months, given its insolubilit y in water ⁶⁸	Months, given its insolubilit y in water ⁶⁹	Months, given its insolubilit y in water ⁷⁰	Months, given it is slightly soluble in water ⁷¹	Months, given its insolubilit y in water ¹	Months, given its insolubilit y in water ⁷²	Months, given its water solubility = 0.1 g/L) ⁷³
Box 4. Pı	Potential input into environment	 4.6. What is annual quantity of NPs from the manufacturing phase that reaches the environment via wastewater, exhaust gases or solid waste? 4.7. What is the physical surrounding or carrier material of NPs in the 	<5kg (see Table S-1) Liquid media	<5kg (see Table S-1) Liquid media	<5kg (see Table S-1) Liquid media	<5kg (see Table S-1) Liquid media	<5kg (see Table S-1) Liquid media	<5kg (see Table S-1) Solid matrix,	<5kg (see Table S-1) Liquid media	<5kg (see Table S-1) Liquid media
	Poteren	product during the use phase?						not stable under condition s of use		

	LICARA	nanoSCAN questions	Al	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
		 4.8. What is the annual quantity of NPs in products that reaches from production or use phase the environment via utility products, waste water, exhaust gases or solid waste? 4.9. What is the annual quantity of 	<5kg (see Table S-1) <5kg (see	<5kg (see Table S-1) <5kg (see	<5kg (see Table S-1) <5kg (see	<5kg (see Table S-1)	<5kg (see Table S-1) <5kg (see	<5kg (see Table S-1)	<5kg (see Table S-1)	<5kg (see Table S-1) <5kg (see
		disposed ENM (from the production or use phase)?	Table S-1)							
Box 5. Occupatio nal health	Stoffenma nager Nano 1.0	Hazard & exposure during: 5.1a. Manufacture of ENM 5.1b. Processing of ENM 5.1c. Application of nanoproduct	B1 (see Table S-7)	C1 (see Table S-7)	D1 (see Table S-7)	B1 (see Table S-6)				
Consumer health risks	ire by consumers se phase	6.1. At what location is the nanoelement situated in the article or the product?	NA: Product for professio nal market only							
Box 6. Consum	Hazard & exposure during use	6.2. What is the size of the consumer population using the nanoproduct and hence which may be exposed?	NA: Product for professio nal market only							

Table S-7. Detailed results from Stoffenmanager 1.0 applied to ENMs in case study relevant for occupational risks (Box 5 of LICARA nanoSCAN). Details shown in table reflect generated output from Stoffenmanager 1.0, and some questions/responses are slightly abbreviated for brevity reasons. ENM = engineered nanomaterial; NP = nanoparticle; NA = not available or applicable.

Stoffenmana	ger questions	AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
General data	Product	Al water	Al2O3 water	CuO water	Fe2O3 water	MgO water	MnO2 water	TiO2 water	ZrO2 water
	NP	Al	Al2O3	CuO	Fe2O3	MgO	MnO2	TiO2	ZrO2
	Concentration of NP in	50-99%	50-99%	50-99%	99% (based	100%	50-99%	99.97%	100%
	product	(based on	(based on	(based on	on supplier	(based on	(based on	(based on	(based on
		supplier	supplier	supplier	info)	supplier	supplier	supplier info)	supplier
		info)	info)	info)		info)	info)		info)
	Name risk assessment	ALNP	AI2O3 NP	MgO NP	Fe2O3 NP	MgO NP	MnO2 NP	TiO2 NP	ZrO2 NP
Result risk	Hazard class	В	В	В	В	В	С	D	В
assessment	Exposure class	1	1	1	1	1	1	1	1
	Risk score	111	111	111	111	111	111	II	111
Question	Entered data	Handling of NP	Handling of NP	Handling of NP					
	Source domain	NA	NA	NA	NA	NA	NA	NA	NA
	Appearance	Powder	Powder	Powder	Powder	Powder	Powder	Powder	Powder
	Product dustiness	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
	Product moisture	Dry (< 5%	Dry (< 5%	Dry (< 5%					
	content	moisture	moisture	moisture	moisture	moisture	moisture	moisture	moisture
		content)	content)	content)	content)	content)	content)	content)	content)
	Dilution	NA	NA	NA	NA	NA	NA	NA	NA
	Viscosity	NA	NA	NA	NA	NA	NA	NA	NA
	Fibers	No	No	No	No	No	No	No	No
	Fiber size	No	No	No	No	No	No	No	No
	Hazardous properties	Harmful and/or irritating	Harmful and/or irritating	Harmful and/or irritating	Harmful and/or irritating	Harmful and/or irritating	Toxic, corrosive and/or respiratory	Carcinogenic, reprotoxic and/or very toxic	Harmful and/or irritating
							allergens		
	NP type	NA	NA	NA	NA	NA	NA	NA	NA
	No. employees that can be exposed	3	3	3	3	3	3	3	3
	Production or usage	1	1	1	1	1	1	1	1

Stoffenm	anager questions	AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
	volume								
	Start date of product work period	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017
	End data of product work period	8/1/2018	8/1/2018	8/1/2018	8/1/2018	8/1/2018	8/1/2018	8/1/2018	8/1/2018
	Actualisation date	NA	NA	NA	NA	NA	NA	NA	NA
Task	Task Duration of task Frequency of task Task in breathing zone	Handling small amts (up to 100 g) or low quantities likely to be released 1-30 min/day ~1day/2wks No	Handling small amts (up to 100 g) or low quantities likely to be released 1-30 min/day ~1day/2wks No	Handling small amts (up to 100 g) or low quantities likely to be released 1-30 min/day ~1day/2wks No	Handling small amts (up to 100 g) or low quantities likely to be released 1-30 min/day ~1day/2wks No	Handling small amts (up to 100 g) or low quantities likely to be released 1-30 min/day ~1day/2wks No	Handling small amts (up to 100 g) or low quantities likely to be released 1-30 min/day ~1day/2wks No	Handling small amts (up to 100 g) or low quantities likely to be released 1-30 min/day ~1day/2wks No	Handling small amts (up to 100 g) or low quantities likely to be released 1-30 min/day ~1day/2wks No
	Multiple employees Regular cleaning of working room	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
	Regular inspections and maintenance	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Control measures at source	Local exhaust ventilation	Local exhaust ventilation	Local exhaust ventilation	Local exhaust ventilation	Local exhaust ventilation	Local exhaust ventilation	Local exhaust ventilation	Local exhaust ventilation
	Segregation of employee	Mechanical and/or natural ventilation	Mechanical and/or natural ventilation	Mechanical and/or natural ventilation	Mechanical and/or natural ventilation	Mechanical and/or natural ventilation	Mechanical and/or natural ventilation	Mechanical and/or natural ventilation	Mechanical and/or natural ventilation
	Protection of employee	Filter mask	Filter mask	Filter mask P2	Filter mask	Filter mask	Filter mask	Filter mask P2	Filter mask P2

Table S-8. Detailed results from NanoGRID applied to ENMs in case study. ENM = engineered nanomaterial; NP = nanoparticle; NA = not available or applicable. Note: the questions listed below are slightly abbreviated questions from the NanoGRID methodology for brevity reasons.

NanoGRI	D questions		AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
Tier 1. Screeni ng criteria	1.1.1 Basic information	Name of ENM- enabled product	Al water treatment	Al_2O_3 water treatment	CuO water treatment	Fe ₂ O ₃ water treatment	MgO water treatment	MnO2 water treatment	TiO ₂ water treatment	ZrO ₂ water treatment
		ENM chemical composition	Al	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO2	TiO2	ZrO2
		Commercial name of product	Aluminum powder, spherical, APS 60- 80nm	Aluminum oxide, 99.9%	Copper (II) oxide, nanopowd er	Iron (III) oxide, nanopowd er, 99.95%	Magnesiu m oxide, nanopowd er, 99+%	Manganese dioxide MnO ₂ nanoparticle s (MnO ₂ , 98%, 50nm)	Titanium (IV) oxide, anatase, nanopowder , 99.7%	Zirconium (IV) oxide, nanopowder , <100 nm particle size (TEM)
		Stage of development	Lab scale	Lab scale	Lab scale	Lab scale	Lab scale	Lab scale	Lab scale	Lab scale
		Vendor, if ENM purchased	Alfa Aesar	Alfa Aesar	Alfa Aesar	Alfa Aesar	Alfa Aesar	NPs synthesized in NC State lab (grown on nanofibrous filter media)	Alfa Aesar	Sigma- Aldrich
		Manufacture r	Vendor	Vendor	Vendor	Vendor	Vendor	NA	Vendor	Vendor
		Primary use of ENM	Absorbant	Absorbant	Absorbant	Absorbant	Absorbant	Absorbant	Absorbant	Absorbant
		Purpose of manufacturi ng material in nano-scale	Increased surface area, reactivity	Increased surface area, reactivity	Increased surface area, reactivity	Increased surface area, reactivity	Increased surface area, reactivity	Increased surface area, reactivity	Increased surface area, reactivity	Increased surface area, reactivity
		Multiple types of ENMs?	No	No	No	No	No	No	No	No
		List other types of ENMs	NA	NA	NA	NA	NA	NA	NA	NA

NanoGRID questions		AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
	Test these separately?	No	No	No	No	No	No	No	No
	Rationale for not testing all ENMs	Outside scope	Outside scope	Outside scope	Outside scope	Outside scope	Outside scope	Outside scope	Outside scope
1.1.2 Technical questions	ENM particulate or part of structure?	NP	NP	NP	NP	NP	NP	NP	NP
	List all similar materials	NA	NA	NA	NA	NA	NA	NA	NA
	ENM received as dry powder or wet suspension?	Dry powder	Dry powder	Dry powder	Dry powder	Dry powder	NPs grown on nanofibrous filter media	Dry powder	Dry powder
	If "Other," describe	NA	NA	NA	NA	NA	NA	NA	NA
	Size of ENM	60-80nm	60nm	30-50nm	3nm	100nm	50nm	15nm	<100nm
	Shape of ENM	Sphere	Sphere	Sphere	Sphere	Sphere	Sphere	Sphere	Sphere
	Chemical composition of ENM	AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
	Multiple chemical components ?	No	No	No	No	No	No	No	No
	Other chemical components	No	No	No	No	No	No	No	No
	Describe product	Water treatment application that involves water	Water treatment application that involves water	Water treatment application that involves	Water treatment application that involves	Water treatment application that involves	Water treatment application that involves water	Water treatment application that involves water	Water treatment application that involves water

NanoGRI	D questions		AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
NanoGRI	D questions 1.2 Technology category	Select location of ENM ⁴	Al flowing through ENMs in closed container Category 3B. Fluid Suspended Nano- Object, 3-D structure	Al ₂ O ₃ flowing through ENMs in closed container Category 3B. Fluid Suspended Nano- Object, 3-D structure	CuO water flowing through ENMs in closed container Category 3B. Fluid Suspended Nano- Object, 3- D	Fe ₂ O ₃ water flowing through ENMs in closed container Category 3B. Fluid Suspended Nano- Object, 3- D	MgO water flowing through ENMs in closed container Category 3B. Fluid Suspended Nano- Object, 3- D	MnO₂ flowing through ENMs in closed container Category 3A. Surface Bound Nano- Object, 3-D structure	TiO ₂ flowing through ENMs in closed container Category 3B. Fluid Suspended Nano- Object, 3-D structure	ZrO₂ flowing through ENMs in closed container Category 3B. Fluid Suspended Nano- Object, 3-D structure
	1.3 ENM definition Tier 1 Conclus	Select best ENM definition ⁷⁴⁻⁷⁶	US EPA TSCA Section 8, and/or EU 2011 definition ^{75,7} 6 Proceed to	US EPA TSCA Section 8, and/or EU 2011 definition ^{75,7} 6 Proceed to	structure US EPA TSCA Section 8, and/or EU 2011 definition ⁷ 5,76 Proceed to	Structure US EPA TSCA Section 8, and/or EU 2011 definition ⁷ 5,76 Proceed to	structure US EPA TSCA Section 8, and/or EU 2011 definition ⁷ 5,76 Proceed to	US EPA TSCA Section 8, and/or EU 2011 definition ^{75,7} 6 Proceed to	US EPA TSCA Section 8, and/or EU 2011 definition ^{75,7} 6 Proceed to	US EPA TSCA Section 8, and/or EU 2011 definition ^{75,7} 6 Proceed to
Tier 2. Potenti al release	2.1 Release Product classificatio n and use Conservativ	Is ENM a freely dispersed particle (product class 3B or 3D)? Does ENM	Tier 2 Yes (Category IIIB) Yes	Tier 2 Yes (Category IIIB) Yes	Tier 2 Yes (Category IIIB) Yes	Tier 2 Yes (Category IIIB) Yes	Tier 2 Yes (Category IIIB) Yes	Tier 2 No (Category IIIA) Yes	Tier 2 Yes (Category IIIB) Yes	Tier 2 Yes (Category IIIB) Yes
	e release scenario	have known hazard concentratio ns? Complete "Hazard	Ok, continue	Ok, continue	Ok, continue	Ok, continue	Ok, continue	Ok, continue	Ok, continue	Ok, continue

NanoGRID question	ns	AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
	identification								
	" page								
	If 100% of	No	No	No	No	No	Yes	No	No
	ENM in								
	product were								
	released,								
	would it be								
	below								
	screening								
	thresholds?								
2.2 Haza		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
identific									
n	values found								
	for ENM?								
2.2.1	PNEC	ECHA	ECHA	ECHA	ECHA	ECHA	ECHA	ECHA	ECHA
Environi		method	method	method	method	method	method	method	method
tal haza		Acute:	Acute:	Acute:	Acute:	Acute:	Acute:	Acute:	Acute:
screenin	- -	Species 1:	Species 1:	Species 1:	Species 1:	Species 1:	Species 1:	Species 1:	Species 1:
	levels, at	219000 ppb,	162392 ppb,	92700	36060	174000	10000 ppb,	10910 ppb,	10000 ppb,
	least 1 acute	LC50,	LC50,	ppb, EC50,	ppb, EC50,	ppb, IC50,	EC50,	Phaeodactyl	EC50,
	or chronic is	Daphnia,	Daphnia,	Daphnia,	Danio	Hela cells,	Chlorella	um	Saccharomy
	required	immobilizati	mortality,	mortality,	rerio, 48H,	72H, cell	Pyrenoidosa	tricornutum,	ces
		on, 24H ²¹	48H ²⁶	48H ⁷⁷	hatching	viability ⁸¹	, 48H,	72H, growth	cerevisae,
					rate ⁴⁰		mortality ⁴⁶	inhibition ⁴⁸	oxygen
		Species 2:	Species 2:	Species 2:		Species 2:			content ⁸²
		7483 ppb,	162392 ppb,	80000	Species 2:	240030	Species 2:	Species 2:	
		LC50,	EC50,	ppb, EC50,	53350	ppb, IC50,	170000 ppb,	35306 ppb,	
		Daphnia,	Daphnia,	Tetrahyme	ppb, LC50,	SNU-16,	EC 50,	EC50,	
		immobilizati	Immobilizati	na	Danio	cell	Saccharomy	Daphnia	
		on, 48H ²¹	on, 48H ²⁶	thermophil	rerio,	viability ⁸¹	ces	Magma,	
				a, 24H,	168H		cerevisae,	48H,	
		Chronic:	Chronic:	viability	mortality	Species 3:	oxygen	immobilizati	
		None	None	(atp	40	233330pp	consumptio	on ²⁶	
				content) ⁷⁸		b, IC50,	n ⁸²		
					Chronic:	AGS, cell		Species 3:	
				Species 3:	Species 1,	viability ⁸¹	Chronic:	800 ppb,	
				28000ppb,	100000			EC50,	

NanoGRID questions		AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
				LC50, Nitellopsis Obtusa, 96H, mortality, ⁷⁹ Chronic: None	ppb, NOEC, Ceriodaph nia dubia, 48H, mortality, ⁸⁰	Chronic: None	None	Daphnia Magma, 48H, mortality ⁸³ Chronic: Species 1: NOEC, Cyprinus carpio, mortality ⁸⁴ Species 2: NOEC, Danio rerio ⁸⁵	
	Calculated PNEC from NanoGRID (ppb)	40.41	136.27	59.21	1000	213.57	41.20	20	100
	PEC: Model to compute PEC	None	57,000 ppb (mg/kg), sediment ⁸⁶	None	16,000 ppb, sediment (mg/kg) ⁸⁶	None	None	65,000 ppb (mg/kg), sediment ⁸⁷	None
2.2 Hazard identificatio n 2.2.2 Human health	Effect values for: Inhalation Dermal Ingestion	None	None	None	None	None	None	Inhalation: 5 mg/cm3 Dermal: below detection limit Ingestion: 15 mg/kg	None

NanoGRID questions		AI	Al ₂ O ₃	CuO	Fe ₂ O ₃	MgO	MnO ₂	TiO ₂	ZrO ₂
								88	
Tier 2 Conclus	ion	Proceed to	Proceed to	Proceed to	Proceed to	Proceed to	Perform	Proceed to	Proceed to
		Tier 3.	Tier 3.	Tier 3.	Tier 3.	Based on:	ENM release	Tier 3. Based	Tier 3. Based
		Based on:	Based on:	Based on:	Based on:	Unbound,	tests, using	on:	on:
		Unbound,	Unbound,	Unbound,	Unbound,	loose NPs;	corrosion-	Unbound,	Unbound,
		loose NPs;	loose NPs;	loose NPs;	loose NPs;	Assume	and	loose NPs;	loose NPs;
		Assume	Assume	Assume	Assume	100%	aqueous-	Assume	Assume
		100%	100%	100%	100%	release	based tests	100%	100%
		release	release	release	release	potential	and	release	release
		potential	potential	potential	potential	and	different	potential	potential
		and	and	and	and	persistenc	aging times	and	and
		persistency;	persistency;	persistenc	persistenc	y;	to get more	persistency;	persistency;
		Potential	Potential	у;	y;	Potential	information	Potential	Potential
		risks cannot	risks cannot	Potential	Potential	risks	on ENM	risks cannot	risks cannot
		be	be	risks	risks	cannot be	release	be	be
		dismissed;	dismissed;	cannot be	cannot be	dismissed;		dismissed;	dismissed;
		More	More	dismissed;	dismissed;	More		More	More
		information	information	More	More	informatio		information	information
		needed on	needed on	informatio	informatio	n needed		needed on	needed on
		fate	fate	n needed	n needed	on fate		fate	fate
				on fate	on fate				

Table S-9. Detailed results from NanoGRID applied to MnO_2 NP for release potential (category IIIA, surface bound NP using⁴). Each question is scored from 0 to 5 by the user, where 0 indicates no probability and 5 indicates high probability of occurrence. The Total Release Score (90th Percentile) reflects the average score from the associated questions in each category. *Aging is not well-defined in NanoGRID and no specific release tests are identified; rather the user is recommended to perform several potential ENM release tests over time to characterize aging factors on ENM release.

Category	Question	Question	Total
		Score	Release
			Score (90 th
			Percentile)
Aqueous	1. The material will be immersed in water or be submerged during use	5	3

Category	Question	Question Score	Total Release Score (90 th Percentile)		
	2. The material will be used in an external setting and have the potential to be rained on	0			
	3. The material will be used in an environment that is subjected to acid rain	0			
	4. The material will be used in an environment that is subjected to large changes in humidity	5			
	 The material will be exposed to water periodically via some other means (e.g., washing, rinsing, splashing, etc.) 	5			
Lillana da la t	6. The material will be used outdoors	0			
Ultraviolet	7. The material will be exposed to sunlight or artificial UV light either directly or intermittently	0	- 0		
	8. The product will be exposed to temperature fluctuations (e.gused outdoors and indoors)	3			
Thermal	9. Any process that uses heat (e.g., hot air, sunlight, resistive heating, etc.) to remove liquid from the surface or interior of the product. This includes air dryers, clothes dryers, and other thermal processes	0	0.8		
	10. The product will experience temperatures exceeding room temperature	0			
	11. The product/material will experience temperatures associated with a freezing event	0			
-	12. Mechanical stress caused by a singular sharp or angular object coming into contact with the surface of the material	0			
	13. Mechanical stress caused by intentional abrasion with a sanding or polishing surface (e.g., sandpaper, cloth, etc.)	0			
	14. Mechanical stress caused by externally applied force compressing the material	2			
	. Mechanical stress caused by jarring or impact from release of gravitational potential energy (being dropped)		l		
Mechanical	16. Mechanical stress from multiple abrasive interactions (e.g., exposure to dirt, grit, friction with other objects, etc.)	sure to dirt, grit, friction with other objects, 5 0.8			
	17. Intense abrasion due to an intentional or unintentional repetitive motion with significant friction	0			
-	18. Separation of parts of the material due to strong abrasive or shear forces	0			
	19. Mechanical stress caused by a drill or drilling-like interaction		-		
	20. Strong abrasion due to repetitive impact of small, abrasive material, including intentional sandblasting or incidental exposure (e.g., wind-blown particles)				
	21. Shaking, bumping, bouncing or other mechanical stress due to movement	1	1		
Combustion	22. The material will be incinerated or exposed to flame, fire, or combustion during use	0	0		
	23. It will be exposed to chemical agents for cleaning	1			
Chemical Reactivity	24. It will be exposed to surfactants				
	25. The material can inadvertently come into contact with other chemical solutions (spills, splashes, sprays, accidental exposure, etc.)	0	0.8		
C	26. It will be subjected to corrosive cleaning agents		2.2		
Corrosion	27. The material will be subjected to redox in the environment	1	2.3		

Category	Question	Question Score	Total Release Score (90 th Percentile)
	28. The material will be used in salt water environments	5	
Aging*	29. Given the product use characteristics and properties is material aging a concern	5*	5*

References

- 1. US Research Nanomaterials, Inc., *Manganese Dioxide (MnO2) Nanopowder / Nanoparticles Material Safety Data Sheet*, Revised 11/20/2017, 2017.
- 2. S.F. Hansen, K. Jensen and A. Baun, NanoRiskCat: A Conceptual Tool for Categorization and Communication of Exposure Potentials and Hazards of Nanomaterials in Consumer Products, *J. Nanopart. Res.*, 2014, **16**, 2195-2220.
- 3. S.F. Hansen, K. Jensen and A. Baun, Erratum to: NanoRiskCat: A Conceptual Tool for Categorization and Communication of Exposure Potentials and Hazards of Nanomaterials in Consumer Products, *J. Nanopart. Res.*, 2014, **19**, 236, DOI 10.1007/s11051-017-3909-4.
- S.F. Hansen, E.S. Michelson, A. Kamper, P. Borling, F. Stuer Lauridsen and A. Baun, Categorization Framework to Aid Exposure Assessment of Nanomaterials in Consumer Products, *Ecotoxicol.*, 2008, 17(5), 438-447.
- 5. European Chemicals Agency (ECHA), *Classification, Labelling and Packaging (CLP) Regulation*, Helsinki, Finland, 2013.
- Licara NanoSCAN, <u>https://diamonds.tno.nl/licara/index.php#/introduction</u>, (Accessed May 9, 2018), 2018.
- 7. Swiss Federal Office of Public Health, *Precautionary Matrix for Synthetic Nanomaterials*, Berne, Switzerland, 2017.
- 8. B. van Duuren-Stuurman, S. Vink, K. Verbist, H. Heussen, D. Brouwer, D. Kroese, M. Van Niftrik, E. Tielemans and W. Fransman, Stoffenmanager Nano Version 1.0: A Web-Based Tool for Risk Prioritization of Airborne Manufactured Nano Objects, *An. Occupat. Hyg.*, 2012, **56**(5), 525-541.
- S.F. Hansen, A. Baun and K. Alstrup-Jensen, NanoRiskCat A Conceptual Decision Support Tool for Nanomaterials, Environmental Project No. 1372 2011, Danish Ministry of the Environment/Danish EPA, Copenhagen, Denmark, 2011.
- 10. NanoGRID, *Nano Guidance for Risk Informed Deployment*, US Army Corps of Engineers, Engineer Research and Development Center, 2017.
- 11. Dutch National Institute for Public Health and the Environment, *SimpleBox4Nano*, 2017.
- 12. H.H. Liu, M. Bilal, A. Lazareva, A. Keller and Y. Cohen, Simulation Tool for Assessing the Release and Environmental Distribution of Nanomaterials, *Beilstein J. Nanotechnol.*, 2015, **6**, 938–951.
- 13. ECHA, Guidance on Information Requirements and Chemical Safety Assessment-Chapter R.10: Characterisation of Dose[Concentration]-Response for Environment, Helsinki, Finland, 2008.
- 14. ECHA, Guidance on Information Requirements and Chemical Safety Assessment-Chapter R.16: Environmental Exposure Estimation Version 2.1. European Chemicals Agency, Helsinki, Finland, 2012.
- 15. A.J. Wagner, C.A. Bleckmann, R.C. Murdock, A.M. Schrand, J.J. Schlager and S.M. Hussain, Cellular Interaction of Different Forms of Aluminum Nanoparticles in Rat Alveolar Macrophages, *J. Phys. Chem. B*, 2007, **111**, 7353-7359.
- 16. L. Braydich-Stolle, S. Hussain, J. Schlager and M. Hoffmann, In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells, *Toxicol. Sci.*, 2005, **88**(2), 412-419.

- 17. A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith and A.F. Syed, Metal-Based Nanoparticles and their Toxicity Assessment, *WIREs Nanomed. Nanobiotechnol.*, 2010, **2**, 544-568.
- 18. Alfa Aesar, Safety Data Sheet per OSHA HazCom 2012: Aluminum Powder, <u>https://www.alfa.com/en/content/msds/USA/45546.pdf</u> (Accessed May 7, 2018), 2015.
- 19. National Institute for Occupational Safety and Health (NIOSH), *Pocket Guide: Aluminum*, NIOSH Pocket Guide to Chemical Hazards, 2016.
- 20. Skyspring Nanomaterials, Inc., Material Safety Data Sheet: Aluminum powder, <u>www.ssnano.com/i/u/10035073/h/MSDS/MSDS-2016/SDS_Al__0221XH.pdf</u>, (Accessed March 22, 2018), 2015.
- 21. N. Strigul, L. Vaccari, C. Galdun, M. Wazne, X. Liu, C. Christodoulatos and K. Jasinkiewicz, Acute Toxicity of Boron, Titanium Dioxide, and Aluminum Nanoparticles to Daphnia magna and Vibrio fischeri, *Desalination*, 2009, 248, 771-782.
- 22. E. Park, J. Sim, Y. Kim, B.S. Han, C. Yoon, S. Lee, M.H. Cho, B.S. Lee and J.H. Kim, A 13-Week Repeated-Dose Oral Toxicity and Bioaccumulation of Aluminum Oxide Nanoparticles in Mice, *Arch. Toxicol.*, 2015, 89, 371-379.
- 23. E. Park, H. Kim, Y. Kim, and K. Choi, *Toxicol. Environ. Chem.*, Repeated-Dose Toxicity Attributed to Aluminum Nanoparticles Following 28-day Oral Administration, Particularly on Gene Expression in Mouse Brain, 2010, **93**(1), 120-133.
- 24. M.G. Morsy, K.S. El-Ala and A.A. Ali, Studies on Fate and Toxicity of Nanoalumina in Male Albino Rats Lethality, Bioaccumulation and Genotoxicity, *Toxicol. Ind. Health*, 2016, **32**(2), 344-359.
- 25. A.M. Shirazi, F. Shariati, A.K. Keshavarz and Z. Ramezanpour, Toxic Effect of Aluminum Oxide Nanoparticles on Green Micro-Algae Dunaliella salina, *Int. J. Environ. Res.*, 2015, 9(2), 585-594.
- 26. X. Zhu, L. Zhu, Y. Chen and S. Tian. Acute Toxicities of Six Manufactured Nanomaterial Suspensions to Daphnia magna, *J. Nanopart. Res.*, 2009, **11**, 67-75.
- S. Pakrashi, S. Dalai, A. Humayan, S. Chakravarty, N. Chandrasekaran and A. Mukherjee, Cerodaphnia dubia as a Potential Bio-Indicator for Assessing Acute Aluminum Oxide Nanoparticle Toxicity in Fresh Water Environment, *PLoS ONE*, 2013, 8(9), DOI: 10.1371/journal.pone.0074003.
- H. Karlsson, P. Cronholm, J. Gustafsson and L. Moller, Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes, *Chem. Res. Toxicol.*, 2008, **21**, 1726–1732.
- 29. B. Fahmy and S. Cormier, Copper Oxide Nanoparticles induce Oxidative Stress and Cytotoxicity in Airway Epithelial Cells, *Toxicol. in Vitro*, 2009, **23**, 1365-1371.
- US Research Nanomaterials, Inc., Safety Data Sheet: Copper Oxide (CuO) Nanopowder / Nanoparticles, <u>http://s.b5z.net/i/u/10091461/f/MSDS-NANOPOWDERS/US3063.pdf</u>, (Accessed March 23, 2018), 2017.
- 31. ECHA, Substance information: Copper Oxide, Helsinki, Finland, 2018a.
- 32. K. Juganson, A. Ivask, I. Blinova, M. Mortimer and A. Kahru, Nano E-Tox Database, *Beilstein J. Nanotechnol.*, 2015, **6**, 1788–1804.

- 33. V. Aruoja, H.C. Dubourguier, K. Kasemets and A. Kahru, Toxicity of Nanoparticles of CuO, ZnO and TiO2 to Microalgae Pseudokirchneriella subcapitata, *Sci. Total Environ.*, 2009, **407**(4), 1461–1468.
- M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier and A. Kahru, Toxicity of Nanosized and Bulk ZnO, CuO and TiO2 to Bacteria Vibrio Fischeri and Crustaceans Daphnia Magna and Thamnocephalus Platyurus, *Chemosphere*, 2008, **71**(7), 1308–1316.
- M. Ates, V. Demir, Z. Arslan, H. Kaya, S. Yilmaz and M. Camas, Chronic Exposure of Tilapia (Oreochromis niloticus) to Iron Oxide Nanoparticles – Effects of Particle Morphology on Accumulation, Elimination, Hematology and Immune Response, *Aquat. Toxicol.*, 2016, **177**, 22-32.
- 36. V. Dhakshinamoorthy, V. Manickam and E. Perumal, Neurobehavioural Toxicity of Iron Oxide Nanoparticles in Mice, *Neurotoxic. Res.*, 2017, **32**, 187-203.
- 37. U.A. Reddy, P.V. Prabhakar and M. Mahboob, Biomarkers of Oxidative Stress for In Vivo Assessment of Toxicological Effects of Iron Oxide Nanoparticles, *Saudi J. Biol. Sci.*, 2017, **24**, 1172-1180.
- A. Murray, E. Kisin, A. Inman, S.H. Young, M. Muhammed, T. Burks, A. Uheida, A. Tkach, M. Waltz, V. Castranova, B. Fadeel, V. Kagan, J. Riviere, N. Monteiro-Riviere and A. Shvedova, Oxidative Stress and Dermal Toxicity of Iron Oxide Nanoparticles, *In Vitro Cell Biochem Biophys*, 2013, 67, 461-476.
- US Research Nanomaterials, Inc., Safety Data Sheet: Iron Oxide (Fe2O3) Nanoparticles / Nanopowder Water Dispersion, <u>http://s.b5z.net/i/u/10091461/f/MSDS-Dispersion/US7220.pdf</u>, (Accessed October 23, 2017), 2017.
- 40. X. Zhu, S. Tian and Z. Cai, Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages, *Plos One*, 2012, DOI: https://doi.org/10.1371/journal.pone.0046286.
- 41. L. Wang, L. Wang, W. Ding and F. Zhang, Acute Toxicity of Ferric Oxide and Zinc Oxide Nanoparticles in Rats, *J. Nanosci. Nanotechnol.*, 2010, **10**(12), 8617-8624.
- 42. ECHA, Hematite (Fe2O3): Toxicological Summary, Helsinki, Finland, 2018.
- 43. ECHA, Summary of Classification and Labelling: Magnesium oxide, Helsinki, Finland, 2018c.
- 44. M. Ghobadian, M. Nabiuni, K. Parivar, M. Fathi and J. Pazooki, Toxic Effects of Magnesium Oxide Nanoparticles on Early Developmental and Larval Stages of Zebrafish (Danio rerio), *Ecotoxicol. Environ. Saf.*, 2015, **122**, 260–267.
- 45. ECHA, Summary of Classification and Labelling, Harmonised classification Annex VI of Regulation (EC) No 1272/2008 (CLP Regulation), Manganese dioxide, Helsinki, Finland, 2018d.
- 46. G. Karunakaran, J. Matheswaran, G. Alexander, K. Evgeny and K. Denis, Assessment of FeO and MnO Nanoparticles Toxicity on Chlorella pyrenoidosa, *Nanosci. Nanotechnol.*, 2017, **17**(3), 1712-1720.
- 47. ECHA, *Titanium Dioxide Proposed to be Classified as Suspected of Causing Cancer when Inhaled*, Helsinki, Finland, 2017.
- 48. L. Clément, C. Hurel and N. Marmier, Toxicity of TiO2 Nanoparticles to Cladocerans, Algae, Rotifers and Plants Effects of Size and Crystalline Structure, *Chemosphere*, 2013, **90**, 1083-1090.
- 49. A. Dabrunz, L. Duester, C. Prasse, F. Seitz, R. Rosenfeldt, C. Schilde, G. Schaumann and R. Schulz, Biological Surface Coating and Molting Inhibition as Mechanisms of TiO2 Nanoparticle Toxicity in Daphnia magna, *PLoS ONE*, 2011,**6**(5), DOI: 10.1371/journal.pone.0020112.

- S. Dalai, S. Pakrashi, N. Chandrasekaran and A. Mukherjee, Acute Toxicity of TiO2 Nanoparticles to Ceriodaphnia dubia under Visible Light and Dark Conditions in a Freshwater System, *PLoS ONE*, 2013, 8(4), DOI: 10.1371/journal.pone.0062970.
- S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, G. Lacrois and P. Hoet, Comparative Toxicity of 24 Manufactured Nanoparticles in Human Alveolar Epithelial and Macrophage Cell Lines, *Part. Fibre Toxicol.*, 2009, 6, 14-26.
- 52. R. Buesen, R. Landsiedel, U. Sauer, W. Wohlleben, S. Groeters, V. Strauss, H. Kamp and B. van Ravenzwaay, Effects of SiO2, ZrO2, and BaSO4 Nanomaterials with or Without Surface Functionalization upon 28-day Oral Exposure to Rats, *Arch. Toxicol.*, 2014, **88**(10), 1881–1906.
- 53. M. Lucarelli, A. Gatti, G. Savarino, P. Quattroni, L. Martinelli, E. Monari and D. Boraschi, Innate Defense Functions of Macrophages can be Biased by Nano-Sized Ceramic and Metallic Particles, *Eur. Cytokine Network*, 2004, **15**(4), 339-346.
- 54. K. Soto, A. Carrasco, T. Powell, K. Garza and L. Murr, Comparative In Vitro Cytotoxicity Assessment of Some Manufactured Nanoparticulate Materials Characterized by Transmission Electron Microscopy, *J. Nanopart. Res.*, 2005, 7, 145-169.
- M. Mishra, D. Sabat, B. Ekka, S. Sahu, P. Unnikannan and D. Priyabrat, Oral Intake of Zirconia Nanoparticle Alters Neuronal Development and Behaviour of Drosophila melanogaster, *J. Nanopart. Res.*, 2017, 19, DOI: https://doi.org/10.1007/s11051-017-3971-y.
- 56. LTS Research Laboratories, Inc, Safety Data Sheet: Zirconium oxide, <u>http://www.ltschem.com/msds/ZrO2.pdf</u>, (Accessed March 23, 2018), 2015.
- L. Heckmann, M. Hovgaard, D. Sutherland, H. Autrup, F. Besenbacher and J. Scott-Fordsmand, Limit-Test Toxicity Screening of Selected Inorganic Nanoparticles to the Earthworm Eisenia Fetida, *Ecotoxicol.*, 2011, 20, 226-233.
- 58. G. Karunakaran, R. Suriyaprabha, P. Manivasakan, R. Yuvakkumar, V. Rajendran and N. Kannan, Impact of Nano and Bulk ZrO2, TiO2 Particles on Soil Nutrient Contents and PGPR, *J. Nanosci. Nanotechnol.*, 2013, **13**(1), 678-85.
- 59. M. Miselijic and S. Olsen, Life-Cycle Assessment of Engineered Nanomaterials: A Literature Review of Assessment Status, J. Nanopart. Res., 2014, 16, 2427-2460.
- 60. G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz and B. Weidema, The Ecoinvent Database Version 3 (Part I): Overview and Methodology, *Int. J. Life Cycle Assess.*, 2016, **21**(9), 1218–1230.
- L. Limbach, R. Bereiter, E. Muller, R. Krebs, R. Galli, W. Stark, Removal of Oxide Nanoparticles in a Model Wastewater Treatment Plant: Influence of Agglomeration and Surfactants on Clearing Efficiency, *Environ. Sci. Technol.*, 2008, **42**(15), 5828-5833.
- 62. L. Li, M. Stoiber, A. Wimmer, Z. Xu, C. Lindenblatt, B. Helmreich and M. Schuster, To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters? *Environ. Sci. Technol.*, 2016, **50**(12), 6327-6333.
- 63. T. Walser, L. Limbach, R. Brogioli, E. Erismann, L. Flamigni, B. Hattendorf, M. Juchli, F. Krumeich, C. Ludwig, K. Prikopsky, M. Rossier, D. Saner, A. Sigg, S. Hellweg, D. Gunther and W. Stark,

Persistence of Engineered Nanoparticles in a Municipal Solid-Waste Incineration Plan, *Nat. Nanotechnol.*, 2012, **7**, 520-524.

- 64. P. Westerhoff, M. Kiser and K. Hristovski, Nanomaterial Removal and Transformation During Biological Wastewater Treatment, *Environ. Eng. Sci.*, 2013, **30**(3), DOI: https://doi.org/10.1089/ees.2012.0340.
- 65. P. Westerhoff, G. Song, K. Hristovski and M. Kiser, Occurrence and Removal of Titanium at Full Scale Wastewater Treatment Plants: Implications for TiO2 Nanomaterials, *J. Environ. Monitor.*, 2011, **13**, 1195-1203.
- 66. A. Massari, M. Beggio, S. Hreglich, R. Marin and S. Zuin, Behavior of TiO2 Nanoparticles During Incineration of Solid Paint Waste: A Lab-Scale Test, *Waste Manag.*, 2014, **34**(10), 1897-1907.
- 67. Z. Mousavi, M. Hassanpourezatti, P. Najafizadeh, S. Rezagholian, M. Rhamanifar and N. Nosrati, Effects of Subcutaneous Injection MnO2 Micro- and Nanoparticles on Blood Glucose Level and Lipid Profile in Rat, *Iran. J. Med. Sci.*, 2016, **41**(6), 518-524.
- 68. ThermoFisher Scientific, Safety Data Sheet: Aluminum Oxide, Revision Date 07/19/2017, 2017.
- 69. Alfa Aesar, Safety Data Sheet: Copper (II) Oxide Nanopowder, <u>https://www.alfa.com/en/content/msds/USA/44663.pdf</u> (Accessed May 7, 2018), 2015.
- 70. Alfa Aesar, Safety Data Sheet: Iron (III) Oxide Nanopowder, <u>https://www.alfa.com/en/content/msds/USA/44119.pdf</u> (Accessed May 7, 2018), 2015.
- 71. ThermoFisher Scientific, *Safety Data Sheet: Magnesium Oxide Nanopowder*, Revision Date 11/06/2017, 2017b.
- 72. Alfa Aesar, Safety Data Sheet: Titanium (IV) Oxide, Anatase, Nanopowder, <u>https://www.alfa.com/en/content/msds/USA/45603.pdf</u> (Accessed May 7, 2018), 2016.
- 73. Sigma-Aldrich, Safety Data Sheet: Zirconium(IV) Oxide, <u>https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&prod</u> <u>uctNumber=544760&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%</u> <u>2Fcatalog%2Fproduct%2Faldrich%2F544760%3Flang%3Den</u>, (Accessed May 7, 2018), 2016.
- 74. W.G. Kreyling, M. Semmler-Behnke and Q. Chaudhry, A Complementary Definition of Nanomaterial, *Nano Today*, 2010, **5**, 165-168.
- 75. European Commission (EC), *Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial. Official Journal of the European Union*, 2011/696/EU, Brussels, 2011.
- 76. US Environmental Protection Agency (EPA), *Chemical Substances When Manufactured or Processed as Nanoscale Materials; TSCA Reporting and Recordkeeping Requirements*, TSCA Section 8a, 2017.
- 77. I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer and A. Kahru, Ecotoxicity of Nanoparticles of CuO and ZnO in Natural Water, *Environ. Pollut.*, 2010, **158**(1), 41-47.
- M. Mortimer, K. Kasemets, M. Vodovnik, R. Marinsek-Logar and A. Kahru, Exposure to CuO Nanoparticles Changes the Fatty Acid Composition of Protozoa Tetrahymena thermophila, *Environ. Sci. Technol.*, 2011, 45(15), 6617-6624.

- L. Manusadzianas, C. Caillet, L. Fachetti, B. Gylyte, R. Grigutyte, S. Jurkoniene, R. Karitonas,
 K. Sadauskas, F. Thomas, R. Vitkus and J. Ferard, Toxicity of Copper Oxide Nanoparticle Suspensions to Aquatic Biota, *Environ. Toxicol. Chem.*, 2011, **31**(1), 108-114.
- 80. J. Hu, D. Wang, J. Wang and J. Wang, Bioaccumulation of Fe2O3 (Magnetic) Nanoparticles in Ceriodaphnia dubia, *Environ. Pollut.*, 2012, **162**, 216-222.
- 81. K. Krishnamoorthy, J. Moon, H. Hyun, S. Cho and S. Jae Kim, Mechanistic Investigation on the Toxicity of Mgo Nanoparticles toward Cancer Cells, *J. Mater. Chem.*, 2012, **22**, 24610-24617.
- L. Otero-Gonzales, C. Garcia-Saucedo, J. Field, and R. Sierra-Alvarez, Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 Nanoparticles to the Yeast, Saccharomyces cerevisiae, *Chemosphere*, 2013, 93(6), 1201-1206.
- 83. I. Amiano, J. Olabarrieta, J. Vitorica and S. Zorita, Acute Toxicity of Nanosized TiO2 to Daphnia Magna under UVA Irradiation. *Environ. Toxicol. Chem.*, 2012, **31**(11), 2564-2566.
- 84. H. Sun, H. Zhang, Z. Zhang, Y. Chen and J. Crittenden, Influence of Titanium Dioxide Nanoparticles on Speciation and Bioavailability of Arsenite, *Environ. Pollut.*, 2009, 157(4), 1165-1170.
- 85. R. Griffit, K. Hyndman, N. Denslow and D. Barber, Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles, *Toxicol. Sci.*, 2009, **107**(2), 404-415.
- Y. Wang and B. Nowack, Dynamic Probabilistic Material Flow Analysis of Nano-SiO2, Nano Iron Oxides, Nano-CeO2, Nano-Al2O3, and Quantum Dots in Seven European Regions, *Environ. Pollut.*, 2018, 235, 589-601.
- 87. T. Sun, F. Gottschalk, K. Hungerbuhler and B. Nowack, Comprehensive Probabilistic Modelling of Environmental Emissions of Engineered Nanomaterials, *Environ. Pollut.*, 2014, 185, 69-76.
- National Institute for Occupational Safety and Health (NIOSH), Occupational Exposure to Titanium Dioxide: Current Intelligence Bulleting 63, Department of Health and Human Services, Centers for Disease Control and Prevention, NIOSH Publication No. 2011–160, 2011.