1	Exploring adsorption of neutral aromatic pollutants onto
2	graphene nanomaterials via molecular dynamics simulations and
3	theoretical linear solvation energy relationships
4	
5	Ya Wang, ^{abc} Jeffrey Comer, ^{*d} Zhongfang Chen, ^c Jingwen Chen, ^{*b} James C. Gumbart, ^{*a}
6	
7	^a School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
8	^b Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of
9	Environmental Science and Technology, Dalian University of Technology, Linggong Road 2,
10	Dalian 116024, China
11	^c Department of Chemistry, University of Puerto Rico, San Juan, PR 00931, USA
12	^d Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of
13	Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan,
14	Kansas 66506-5802, USA
15	
16	Corresponding Authors
17	* James C Gumbart, Phone/fax: +1-404-385-0797, e-mail: jcgumbart@gatech.edu.
18	* Jeffrey Comer, Phone/fax: +1-785-532-6311, e-mail: jeffcomer@ksu.edu.
19	*Jingwen Chen, Phone/fax: +86-411-84706269, e-mail: jwchen@dlut.edu.cn.
20	
21 22 23	Number of tables: one; Number of figures: three; Number of pages: seven.

24 Contents

- 25 Table S1. 35 compounds in the training set and 8 compounds in the validation set
- Fig. S1 Calculated free energy versus distance (*r*) between the center-of-mass for 37 organic
- 27 compounds and the surface of graphene or graphene oxide nanosheets
- Fig. S2 Radial distribution functions on GO_E
- 29 **Fig. S3** Radial distribution functions on GO_C
- 30 **SI1.** Details for computing the electrostatic potential distribution with density functional theory
- 31 (DFT) method
- 32
- 33
- 34
- 35

Group	Compound	Substituents	Group	Compound	Substituents
V	benzene (PhH)		V	p-xylene (PXYL)	-CH ₃
Т	chlorobenzene (PhCl)	-Cl	Т	4-chlorotoluene (PCLT)	-CH ₃ , -Cl
Т	bromobenzene	-Br	Т	4-nitrotoluene (NoT)	-NO ₂ , -CH ₃
	(PhBr)				
Т	iodobenzene (PhI)	-I	Т	(3-methylphenyl) methanol (MeBl)	-CH ₃ , -CH ₂ OH
Т	phenol (PhOH)	-OH	V	4-chloroanisole (ClAn)	-Cl, -OCH ₃
Т	benzonitrile (PhCN)	-CN	Т	4-chloroacetophenone (ClAh)	-Cl, -C(O)CH ₃
Т	nitrobenzene (PhNO2)	-NO ₂	Т	1,3-dinitrobenzene (DNIN)	-NO ₂
Т	toluene (PhMe)	-CH ₃	V	methyl 2-methyl benzoate (MMBa)	-CH ₃ , C(O)OCH ₃
Т	phenylmethanol (PhMl)	-CH ₂ OH	Т	4-chloroaniline (PhAm)	-Cl, -NH ₂
V	ethylbenzene (PhEt)	-CH ₂ CH ₃	Т	3,5-dimethylphenol (dMPl)	-OH, -CH ₃
Т	propylbenzene (PhPr)	-CH ₂ CH ₂ CH ₃	Т	hexabromobenzene (HBB)	-Br
V	acetophenone (BzMe)	-C(O)CH ₃	Т	pentabromotoluene (PBT)	-Br, -CH ₃
Т	methylbenzoate	-C(O)OCH ₃	Т	1,2-dibromo-4-(1,2-dibromoethyl)-	-Br,
	(BzOMe)			cyclohexane (TBE)	CHBrCH ₂ Br
Т	2-phenylethanol (PhEl)	-CH ₂ CH ₂ OH	Т	tetrabromo-o-chlorotoluene (TBCT)	-Cl, -Br, -CH ₃
Т	phenylacetate (PhOAc)	-OC(O)CH ₃	Т	naphthalene (NAFT)	
Т	ethylbenzoate (BzOEt)	- C(O)OCH ₂ CH ₃	Т	biphenyl (PhPh)	
Т	4-fluorophenol (FPl)	-OH, -F	Т	1-methylnaphthalene (MeNh)	-CH ₃
Т	3-chlorophenol (ClPl)	-OH, -Cl	Т	BDE209 (B209)	-O-, -Br
V	3-bromophenol (BrPl)	-OH, -Br	Т	BDE47 (B47)	-O-, -Br
Т	m-cresol (mCr)	-OH, -CH ₃	Т	BDE99 (B99)	-O-, -Br
V	p-cresol (PCRO)	-CH ₃ , -OH	Т	BDE207 (B207)	-O-, -Br
Т	4-ethylphenol (EPHE)	-OH, -CH ₂ CH ₃			

37 T and V represent training set and validation set, respectively.

Fig. S1 Calculated free energy versus distance (*r*) between the center-of-mass for 37 organic compounds and the surface of graphene or graphene oxide nanosheets.

Fig. S2 Radial distribution functions (RDFs) on GO_E. H...O: RDFs for H atom in the
substituent of a compound relative to the O atom on GO_E; N...O: RDFs for N atom in the
substituent of a compound relative to the O atom on GO_E.

51

52 Fig. S3 RDFs on GO_C. H...O: RDFs for H atom in the substituent of a compound relative to

the O atom on GO_C; N...O: RDFs for N atom in the substituent of a compound relative to the
O atom on GO_C.

56 SI1. Details for computing the electrostatic potential distribution with density functional theory
 57 (DFT) method

In the density functional theory (DFT) computation, the graphene is a $8 \times 8 \times 1$ supercell, which consists of 128 carbon atoms, while the graphene oxide with the hydroxyl and epoxy groups, includes 128 carbon, 24 hydrogen and 36 oxygen atoms. For graphene oxide, its O/C

61 ratio is 0.28125, consistent with GO_M.

- DMol³ program^{1,2} was applied for carrying out the DFT computations. Before computing the electrostatic potential distribution for the graphene and graphene oxide, we optimized their
- 64 structures with Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE)³
- and double-numerical basis with polarization functions (DNP).^{4,5} Besides, the PBE+D2⁶
- 66 method has also been used. The Gamma point was utilized for sampling in Brillouin-zone, and
- a Methfessel-Paxton smearing of 0.005 Ha was used for doing Brillouin-zone integration.

68 References

1 B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, *J. Chem. Phys.*, **1990**, 92, 508–517.

2 B. Delley, From molecules to solids with the DMol³ approach, *J. Chem. Phys.*, **2000**, 113, 7756–7764.

3 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, **1996**, 77, 3865–3868.

4 N. A. Benedek, I. K. Snook, K. Latham and I. Yarovsky, Application of numerical basis sets to hydrogen bonded systems: A density functional theory study, *J. Chem. Phys.*, **2005**, 122, 144102–144108.

5 Y. Inada and H. Orita, Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets, *J. Comput. Chem.*, **2008**, 29, 225–232.

6 S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, *J. Comput. Chem.*, **2006**, 27, 1787–1799.