Supporting Information (SI) on

Plasma-grafting amidoxime/metal-organic framework composites for

the selective sequestration of U(VI)

Fengbo Li¹, Xiaoyu Li^{1, 2}, Pu Cui^{1, 2}, Yubing Sun^{3*}

¹ The school of Life Science and Environmental Science, Huangshan University,

Huangshan, 245041, P. R. China

² State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural

University, Hefei, 230036, P. R. China

³ College of Environmental Science and Engineering, North China Electric Power

University, Beijing 102206, P. R. China

*Email: <u>sunyb@ipp.ac.cn</u> (Y. Sun); Phone: 86-10-61772890. Fax: 86-10-61772890.

Adsorption Kinetic Models. The pseudo-first-order and pseudo-second-order models can be described by Eqns. (S1) and (S2), respectively:

$$\ln (q_e - q_t) = \ln q_e - k_1 \times t$$
(S1)
$$\frac{t}{q_t} = \frac{1}{K_2 \times q_e^2} + \frac{t}{q_e}$$
(S2)

where q_e and q_t are the adsorption amounts of U(VI) (mg/g) at equilibrium time (h) and time t (h), respectively; k_1 (h⁻¹) and k_2 (g/(mg×h)) represent the kinetic rate constants of the pseudo first-order and pseudo-second-order models, respectively. The calculated kinetic parameters of pseudo first-order and pseudo-second-order models are shown in Table S1.

Table S1. The constants of pseudo-first-order and pseudo-second-order kinetic

 Pseudo-first-order
 Pseudo-second-order

 $q_e(mg/g)$ $K_1(h^{-1})$ R^2 $q_e(mg/g)$ $K_2(g/(mg \times h))$ R^2

 3.3458
 0.2036
 0.8294
 20.04
 0.4611
 0.9999

models for U(VI) removal on AO/MOF composites

Langmuir and Freundlich Models. The Langmuir and Freundlich models can be depicted as Eqns. (S3) and (S4), respectively:

$$\frac{C_e}{q_e} = \frac{C_e}{q_{max}} + \frac{1}{K_L \times q_{max}}$$
(S3)
$$\ln q_e = \ln K_F + \frac{1}{n} \times \ln C_e$$
(S4)

where Ce (mol/L) is the equilibrium concentration of U(VI) remaining in the liquid

phase, q_e (mg/g) is the amount of U(VI) adsorbed on adsorbent after adsorption equilibrium, K_L (L/mg) is a constant related to the enthalpy of adsorption, and q_{max} (mg/g), the maximum sorption capacity, represents the amount of sorbate at complete monolayer coverage. K_F (mg¹⁻ⁿLⁿg⁻¹) is the Freundlich constant related to the sorption capacity and 1/n a constant representing the degree of dependence of sorption with equilibrium concentration.

 Table S2. Optimized parameters for Langmuir and Freundlich models of U(VI)

 adsorption on the AO/MOF composites

	Langmuir model			Freundlich model		
Т	$q_{\rm m}({\rm mg/g})$	K_L (L/mg)	R^2	$Ln K_{\rm F} ({\rm mg^{1-n}L^n/g})$	1/n	<i>R</i> ²
293 K	454.55	0.5238	0.9987	4.8359	0.6758	0.9739
313 K	476.19	1.6154	0.9958	5.183	0.6089	0.961
333 K	497.51	0.7731	0.9992	5.4257	0.4928	0.9265