Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018^{adjust margins}

Environmental Science Nano

PAPER

Electronic Supplementary Information

Real-time and selective detection of nitrates in water using graphene-based fieldeffect transistor sensors

Xiaoyan Chen,^{ab} Haihui Pu,^c Zipeng Fu,^{ab} Xiaoyu Sui,^c Jingbo Chang,^c Junhong Chen^{*}^c and Shun Mao^{*ab}

^aState Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China. E-mail: shunmao@tongji.edu.cn

^bShanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

^cDepartment of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI. 53211, USA. E-mail: jhchen@uwm.edu

Fig. S1 (a) FTIR spectra of rGO, TEBAC, and rGO/TEBAC. The vertical lines represent the characteristic peaks: red lines for rGO, green lines for TEBAC. (b) Standard infrared spectrum of benzyl tri-ethyl ammonium chloride (TEBAC). The standard spectrum was obtained from the National Institute of Advanced Industrial Science and Technology (AIST) (http://sdbs.db.aist.go.jp). The TEBAC infrared spectrum in our study is consistent with the standard spectrum.

Table S1 FTIR characteristic band positions (cm⁻¹) of rGO, TEBAC and rGO/TEBAC and their corresponding chemical groups.

rGO						1727.6		1564.2	
TEBAC	3469.3	3378.7	3231.6	2994.2	2983.6		1613.6		1484.4
rGO/TEBAC	3469.3	3378.7	3231.6	2994.2	2983.6	1727.6	1613.6	1564.2	1484.4
chemical group	-OH	-OH	Ar-H	-CH ₂ -	-CH ₃	C=O	benzene	benzene	benzene
	(free)	(bond)					skeleton	skeleton	skeleton
rGO			1215.6						
TEBAC	1395.0	1377.1		1159.9	1085.7	1009.2	922.1	753.1	
rGO/TEBAC	1395.0	1377.1	1215.6	1159.9	1085.7	1009.2	922.1	753.1	
chemical group	-CH ₃	-CH₃	C-O-C	C-N	C-N	Ar-H	Ar-H	Ar-H	

Fig. S2 Dynamic responses of two typical rGO/TEBAC sensors exposed to nitrate solutions with a concentration from 0.0028 to 28 mg/L NO3-N. Both sensors show rapid current decreases to nitrate ions of various concentrations.

Fig. S3 Dynamic responses of blank device to aqueous solutions containing nitrates from 0.0028 to 28 mg/L. The current shows fluctuations when the nitrate solutions were added and no permanent current change was found. The control experiment results show that the nitrate ions have a negligible contribution to the blank electrodes, and the current change of the rGO/TEBAC sensor to nitrates is coming from the conductivity change of the rGO channel.

Fig. S4 Dynamic responses of the sensors to nitrate solutions (0.3 and 3 mg/L) of different pH (pH = 5-9, a-e) and (f) their sensitivity comparisons. The results show that the sensors have significant responses to nitrates in the tested pH range.

	Methods	LOD (M)	Detection time	
Conventional	Ultraviolet (UV) spectroscopy ^{1, 2}	2.2×10 ⁻⁶	Minutes	
Techniques	UV resonance Raman spectra ³	1.4×10 ⁻⁶	10 min	
	Microwave spectra ⁴	4.8×10 ⁻⁴ (30 mg/L)		
	Gas chromatography-Mass spectrometer ⁵	1×10 ⁻⁶	~ 9.4 min	
	Ion chromatography ⁶	9.7×10 ⁻⁸ (6 ppb)	30 s	
	High-performance liquid chromatography ⁷	2×10 ⁻⁸	8 min	
Electronic	Ion-selective electrode (potentiometric sensor) ⁸	1×10 ⁻⁶	25 s	
Sensors	Nanocopper-based electrode (electrochemical sensor) ⁹	1×10 ⁻⁷	Seconds	
	NaR-organic FET sensor ¹⁰	7.3×10 ⁻⁷	< 20 s	
	rGO/TEBAC FET sensor (this work)	7.86×10 ⁻⁸	2-7 s	

Table S2 Performance comparison of different methods for detecting NO_3^{-1} in water.

Notes and references

- 1. J. Simal, M. A. Lage and I. Iglesias, J. Assoc. Offic. Anal. Chem., 1985, **68**, 962-964.
- 2. M. A. Ferree and R. D. Shannon, *Water Res.*, 2001, **35**, 327-332.
- 3. A. Ianoul, T. Coleman and S. A. Asher, *Anal. Chem.*, 2002, **74**, 1458-1461.
- 4. S. Cashman, O. Korostynska, A. Shaw, P. Lisboa and L. Conroy, *IEEE Sens. J.*, 2017, **17**, 4092-4099.
- 5. D. Tsikas, Anal. Chem., 2000, 72, 4064-4072.
- 6. P. Hatsis and C. A. Lucy, *Anal. Chem.*, 2003, **75**, 995-1001.
- 7. H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu and Y. Komatsu, *J. Chromatogr. A*, 2009, **1216**, 3163-3167.
- 8. B. Schazmann and D. Diamond, *New J. Chem.*, 2007, **31**, 587-592.
- 9. H. Bagheri, A. Hajian, M. Rezaei and A. Shirzadmehr, J. Hazard. Mater., 2017, **324**, 762-772.
- 10. T. Minami, Y. Sasaki, T. Minamiki, S.-i. Wakida, R. Kurita, O. Niwa and S. Tokito, *Biosens. Bioelectron.*, 2016, **81**, 87-91.