Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Release of Silver Nanomaterials from Textile:

Influence of Realistic Wearing on Nanomaterial Characteristics

Vincent Gagnon^a, Mark Button^{a,c}, Hardiljeet K. Boparai^a, Michelle Nearing^a, Denis O'Carroll^b, Kela P. Weber^{a*}

- ^a Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada
- ^b School of Civil and Environmental Engineering, UNSW Water Research Laboratory, The University of New South Wales Sydney, 110 King St, Manly Vale, NSW, 2093, Australia
- ^c Fipke Laboratory for Trace Element Research, Earth, Environmental and Geographic Sciences, University of British Columbia Okanagan, University Way, Kelowna, BC, V1V 1V7, Canada

*Corresponding author: kela.weber@rmc.ca

Alcohol Sulfate	Dimethicone	Mannanase
Alcoholethoxy Sulfate	Disodium Diaminostilbene	Polyethylene Glycol 4000
	Disulfonate	
Alkyldimethylamine Oxide	DTPA	Polyethyleneimine Ethoxylate
Amylase	Ethanol	Propylene Glycol
Borax	Ethanolamine	Protease
Calcium Formate	Fragrance	Sodium Fatty Acids
Citric Acid	Laureth-9	Sodium Formate
Diethylene Glycol	Linear Alkylbenzene	Sodium Hydroxide
	Sulfonate	
Diquaternium Ethoxysulfate	LiquitintTM Blue	Water

Table S1. List of ingredients in Tide Liquid Original Detergent*.

*https://www.pg.com/productsafety/ingredients/household_care/laundary_fabric_care/Tide/Tide_Liquid_Original.pdf

Table S2. Size of the standard Ag-NMs used to calibrate the SP-ICP-MS.

Methods	Size (nm)	Details
DLS	99±1	Z-average, $PDI = 0.15$
TEM	100±9	Average of 50 particles
TEM (from manufacturer)	100±8	Average (stated)

Instrument Settings	Values
Dwell time	10 ms
Settling time	0 ms
Acquisition time	60 s
Scan mode	Peak hopping
Nebuliser	Meinhardt concentric
Spray chamber	cyclonic
Peristaltic Pump Settings	Values
Sample introduction rate	0.8 ml/min
Pump tubing	0.95 mm (ID)
Sample flush	60s @ 24 rpm (2% HNO ₃)
Read delay	30s @ 5 rpm
Sample read	61s @ 10 rpm
Wash	45s @ 24 rpm

 Table S3. Relevant instrument parameters used for SP-ICP-MS analysis.

Table S4. Silver standard used in XANES measurements.

Compound	Cat. number	Manufacturer
Ag Glutathione [*]	PHR1359	Sigma Aldrich
Ag Histidine [*]	AAA1762718	Alfa Aesar
Ag Cysteine [*]	W326305	Sigma Aldrich
AgNO ₃	209139	Sigma Aldrich
Ag_2SO_4	3443-04	J.T. Baker
Ag_2S^*	89473	Alfa Aesar
AgCl	21127	ACROS Organics
Ag ₃ PO ₄	11415	Alfa Aesar
Ag ₂ O	1192080025	Millipore Sigma
Elemental Ag-PVP 30 nm	0120XH	Skyspring Nanomaterials
Elemental Ag 30 nm	0118XH	Skyspring Nanomaterials

*Compounds were synthesised according to methods described in Wang et al., (2015)

	. 0	4	1 0	D (
Sock Sample ^a	Ago	AgCl	Ag_2O	R-factor
Unworn Control 1(BG) - Unwashed	100.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0141
Unworn Control 1(W) - Unwashed	88.9±1.2	7.8 ± 1.1	3.3±1.6	0.0017
Unworn Control 2 (BG) - Unwashed	98.0±0.9	2.0±0.9	0.0±1.3	0.0009
Unworn Control 2 (W) - Unwashed	83.0±1.7	13.8±1.7	3.2±2.4	0.0038
Unworn Control 3 (BG) – Wash Cycle 3	94.7±0.6	2.2±0.6	3.1±0.9	0.0005
Unworn Control 3 (W) – Wash Cycle 3	84.5 ± 1.6	12.2±1.6	3.3±2.3	0.0032
Unworn Control 4 (BG) – Wash Cycle 3	79.5±2.7	17.0±2.5	3.5±3.7	0.0071
Walking 1 (BG) – Wash Cycle 3	97.4±1.3	2.5±1.2	0.1 ± 1.7	0.0021
Walking 1 (W) – Wash Cycle 3	91.4 ± 1.0	7.0±0.9	1.6±1.4	0.0011
Walking 2 (BG) – Wash Cycle 3	86.5±1.6	11.9±1.5	1.6±2.2	0.0027
Running 1(BG) – Wash Cycle 3	95.8±0.6	2.0±0.5	2.1 ± 0.8	0.0003
Running 2(BG) – Wash Cycle 3	100.0±0.3	0.0±0.0	0.0±0.0	0.0033

Table S5. Proportion of of Ag⁰, AgCl and Ag₂O in socks samples determined by LCF of XANES spectra.

^a For some sock samples, two different sections were analyzed, as shown in Figure S3, where BG stands for "Black /Grey strip" and W for "White".

	Minimum (nm)	Maximum (nm)	Mean (nm)
Thickness	9	308	67 ± 56
Length	228	10898	2249 ± 611
Width	125	3031	1085 ± 1963

Location		Right	t Foot	Left Foot		
LUCA		Тор	Sole	Тор	Sole	
	Heel	-7%	-8%	15%	-34%	
Subject 1	Arch	7%	17%	-3%	-12%	
Subject I	Pads	-9%	6%	10%	-4%	
	Toes	-10%	6%	-3%	-3%	
	Heel	20%	-1%	21%	-3%	
Subject 2	Arch	-8%	-3%	-1%	-2%	
Subject 2	Pads	11%	-8%	3%	5%	
	Toes	-14%	-11%	4%	5%	
	Heel	-2%	17%	13%	-3%	
Subject 3	Arch	9%	-3%	2%	-36%	
	Pads	-3%	-15%	5%	0%	
	Toes	0%	-4%	-11%	-38%	

Table S7. Silver variation at 8 locations on the socks used for running after the 3rd cycle.

Pink - Ag loss; Blue - Ag gain; calculated for each location following this formula: (Initial Ag – Final Ag)/Initial Ag. Root mean square error (precision) of XRF measurements was 2.9%. The coefficient of variation between measurement after unfolding, shaking and refolding the sock was 3.3% (n = 10)

Table S8. Silver variation at 8 locations on the socks used for controls after the 3rd cycle.

Location		Right	t Foot	Left Foot		
LUCA		Тор	Sole	Тор	Sole	
	Heel	21%	0%	10%	-7%	
Control 1	Arch	14%	-5%	-1%	-14%	
Control 1	Pads	-6%	-3%	7%	2%	
	Toes	-11%	-13%	-3%	-3%	
	Heel	-13%	14%	7%	-3%	
Control 2	Arch	-1%	10%	11%	-2%	
	Pads	6%	-8%	-1%	-7%	
	Toes	-16%	5%	2%	-11%	
	Heel	9%	-3%	16%	-9%	
Control 3	Arch	15%	1%	3%	-16%	
	Pads	7%	-9%	6%	-8%	
	Toes	-7%	-6%	0%	-8%	

Pink - Ag loss; Blue - Ag gain; calculated for each location following this formula: (Initial Ag – Final Ag)/Initial Ag. Root mean square error (precision) of XRF measurements was 2.9%. The coefficient of variation between measurement after unfolding, shaking and refolding the sock was 3.3% (n = 10)

Location		Right	t Foot	Left Foot		
		Тор	Sole	Top Sole		
	Heel	-28%	-22%	-24%	-24%	
Subject 1	Arch	-12%	-16%	-30%	-30%	
	Pads	-30%	-44%	-19%	-19%	
	Toes	-31%	-34%	-33%	-33%	
Subject 2	Heel	-32%	-6%	-33%	-33%	
	Arch	-21%	-25%	-47%	-47%	
	Pads	-30%	-34%	-23%	-23%	
	Toes	-28%	-31%	-30%	-30%	

Table S9. Silver var	riation at 8 locations	on the socks used	for walking a	after the 3 rd cycle	e.
----------------------	------------------------	-------------------	---------------	---------------------------------	----

Pink - Ag loss; Blue - Ag gain; calculated for each location following this formula: (Initial Ag – Final Ag)/Initial Ag. No measurements were completed for subject 3. Root mean square error (precision) of XRF measurements was 2.9%. The coefficient of variation between measurement after unfolding, shaking and refolding the sock was 3.3% (n = 10)

Figure S1. Locations of XRF measurements on the top and sole of the sock. Black rectangular marking represent the alignment of the XRF analyser on the socks. The letters and numbers represent the 8 positions of the XRF measurement which had an area of 1.5 x 1.5 cm.

Figure S2. Calibration curve for the XRF according to mass of Ag per mass of sock.

Figure S3. Imaging of the standard engineered nanomaterials used to calibrate the SP-ICP-MS (a) TEM image of the standard Ag ENMs, (b) a higher magnification, and (c) TEM image supplied by the manufacturer. The average of at least 50 particles was sized using the line tool in the free software ImageJ.

Figure S4. Normalized frequency of particle sizes in A) 100 nm Ag-NM standard and B) Ag-NM from the wash water of the walking sock experiment. Higher particle size cut-off in the wash water is cause by the ionic Ag background.

	6	4 × 1 1		Counts	$ \begin{array}{r} 1200 \\ 1000 \\ 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 2 \end{array} $	Ag 3 KeV	4
Dimensions	Size (nm)	Thickness	Size (nm)				
Lenght	840	1	59				
Width	608	2	66				
		3	77				
		4	70				
		5	61				
		6	53				
		7	48				

Figure S5. Estimation of the nanoplate size using SEM image

206

Figure S6. Estimation of nanoplate size using SEM image

6

Figure S7. Estimation of nanoplate size using SEM image

Figure S8. Normalized Ag K-edge XANES spectra of various Ag standards.

Figure S9. Sock sample showing the two sections that were analysed by XAS.

Figure S10. Normalized Ag K-edge XANES spectra of sock samples and selected Ag standards. For clarity, the spectra are plotted with an offset of 0.3. BG : black/grey striped section of the sock; W: white fabric sections of the sock

Figure S11. Elemental images by XAS of (A) Ag and (B) Cl and (C) XANES spectra of selected spots for an unwashed sock.

Figure S12. Elemental images by XAS of (A) Ag and (B) Cl and (C) XANES spectra of selected spots for a sock used for running.

Figure S13. A) Number of Ag particles and B) Mass of total silver according to the particle size distribution in the wash (W) and rinse (R) water of unworn control and worn socks (walking and running). All values are from the average of three cycles.

Figure S14. EDX spectra of incidental nanomaterial of A) Ag sheet, B) Ag sphere and C) other shape present in the wash water of an unworn sock

References

Wang P, Menzies NW, Lombi E, Sekine R, Blamey FPC, Hernandez-Soriano MC, et al. Silver sulfide nanoparticles (Ag₂S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology 2015; 9: 1041-1049.