Supporting Information

A Facile Band Alignment of Polymeric Carbon Nitride Isotype Heterojunctions for Enhanced Photocatalytic Tetracycline Degradation

Longbo Jiang ^a, Xingzhong Yuan ^{a*}, Guangming Zeng ^a, Jie Liang ^{a*}, Zhibin Wu ^b, Hou Wang ^a, Jin Zhang ^a, Ting Xiong ^a, Hui Li ^c

a. College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China

b. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China

c. Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, P.R. China

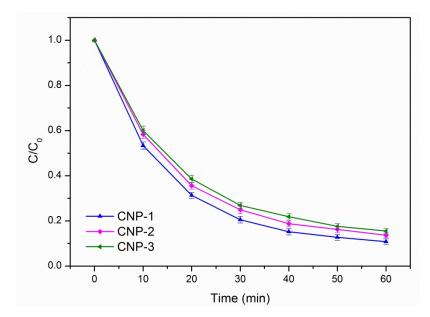


Fig. S1 The photocatalytic TC degradation of PCN/CN composites with error bars.

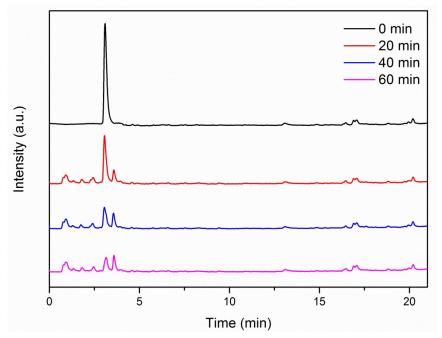


Fig. S2 HPLC spectra of the TC at different reaction time.

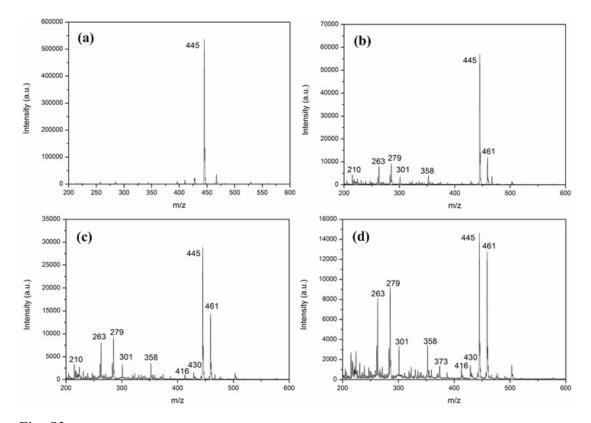


Fig. S3 MS spectra of the TC and possible intermediated at different reaction time of (A) 0 min; (B) 20 min; (C) 40 min; and (D) 60 min.

Table S1. The possible intermediates products of TC degradation.			
<i>m/z</i>	Proposed structure	m/z	Proposed Structure
445	OH O OH O O OH O OH O O HO ^W CH ₃ OH CH ₃ CH ₃	358	OH O OH O OH HO ^{W^W} CH ₃ OH
461	HO CH ₃ OH OH O OH O OH	301	OH OH OH OH OH
430	HO HO HO HO HO HO HO HO HO HO HO HO HO H	279	НО СН3 ОН ОН ОН
416	OH O OH O O OH O OH O O HO ^{W^{**}} CH ₃ OH NH ₂	263	OH O OH HO ^{WCH3} OH
373	HO HO OH OH OH OH OH OH	210	OH OH OH OH OH

Table S1. The possible intermediates products of TC degradation.

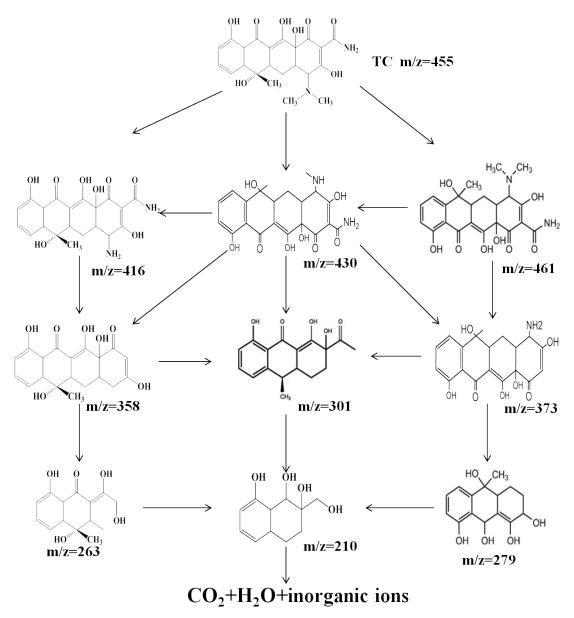


Fig. S4. Proposed photocatalytic degradation pathway of TC by PCN/CN composite.