Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2019

Supporting Information (SI)

2 Efficient Removal of Both Antimonite (Sb(III)) and Antimonate

3 (Sb(V)) from Environmental Water Using Titanate nanotubes

- 4 and nanoparticles
- 5

- 6 Tianhui Zhao,^{ab} Zhi Tang,^a Xiaoli Zhao,^{*a} Hua Zhang,^a Junyu Wang,^{ab} Fengchang Wu,^a
- 7 John P. Giesy,^c Jia Shi.^d
- 8 a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese
- 9 Research Academy of Environmental Sciences, Beijing 100012, China.
- 10 ^b College of Water Sciences, Beijing Normal University, Beijing 100875, China.
- 11 ° Department of Veterinary Biomedical Sciences and Toxicology Centre, University
- 12 of Saskatchewan, Saskatoon, Saskatchewan, Canada.
- 13 ^d University of Science and Technology, Beijing, 100083, China
- 14 Corresponding author.
- 15 E-mail: <u>zhaoxiaoli_zxl@126.com</u>
- 16
- 17 Supplemental Information, 19 pages with 10 Figures and 4 Tables
- 18

- 20 Fig.S1 EDX spectras of TiO₂ NPs, TiO₂ NTs, TiO₂ NPs/ Sb (III), TiO₂ NPs/ Sb
- 21 (V), TiO₂ NTs/ Sb (III), TiO₂ NTs/ Sb (V)
- 22

Fig.S2 Changes of Zeta potentials of TiO₂ NPs and TiO₂ NTs before and after 23 adsorbing Sb(III) and Sb(V). Adsorption capacity of TiO₂ NTs is greater than that of 24 TiO₂ NPs. To compare adsorption of Sb(III) or Sb(V) on surfaces of TiO₂ NPs or TiO₂ 25 NTs, changes of Zeta potential of TiO₂ NTs was less than for TiO₂ NPs. Electrostatic 26 interactions are the primary mechanism of adsorption of Sb(V) on TiO₂ NMs. 27 Positive charges on surfaces of TiO₂ NMs were neutralized by compounds of Sb(V). 28 Meanwhile, complexation played a dominant role in adsorption of Sb (III) on TiO₂ 29 NMs. Changes of Zeta potential of Sb(V) adsorbed onto TiO₂ NMs may be due to 30 forming a stable inner complex.^{14,15} 31

Fig.S2 Zeta potentials of adsorption of Sb(III) and Sb(V) on TiO₂ NPs and TiO₂
NTs

The Dubinin–Radushkevich (D-R) isotherm model can be used to determine the nature of the adsorption process (physical or chemical).¹¹ The linear equation of the D-R isotherm is expressed as Equation 1 and 2:¹⁵

$$\ln Q_e = \ln Q_{DR} - \beta \varepsilon^2 \tag{1}$$

$$\varepsilon = RT \ln \left(1 + 1/C_e \right)$$

41 where qe' is the amount of metal ions sorbed per unit weight of adsorbent (mol 42 L⁻¹), qm' is the maximum adsorption capacity (mol g⁻¹), β is the activity coefficient 43 related to the mean free energy of adsorption (mol² J⁻²), R is the gas constant (8.314 J 44 (mol K)⁻¹); T is the thermodynamic temperature (K); and ε is the Polanyi potential.

(2)

The D-R isotherm model fits the equilibrium data well (Figure S3 and Table S2), R² values were 0.95, 0.98, 0.97, 0.99 for Sb(III) and Sb(V) adsorption on TiO₂ NPs and TiO₂ NTs, respectively. The mean free energy of adsorption (E; kJ (J mol)⁻¹) is expressed as Equation 3:

$$E = \frac{1}{\sqrt{2\beta}} \tag{3}$$

The adsorption behavior might be predicted, whether physical or chemical process, from the E value, which in the range of 8-16 kJ mol⁻¹ is ion-exchange reaction. The mean free energy of Sb(III) and Sb(V) adsorption on TiO₂ NPs were 8.07, 8.90 kJ mol⁻¹ and on TiO₂ NTs were 9.48 and 8.11 kJ mol⁻¹, respectively, which indicated the both Sb(III) and Sb(V) adsorption are chemical process in nature.

56 Fig.S3 Dubinin-Radushkevich (D-R) isotherm models of Sb(III) adsorbed on

- 57 TiO₂ NPs (a), Sb(V) on TiO₂ NPs (b), Sb(III) on TiO₂ NTs (c), Sb(V) on TiO₂ NTs
- 58 (d). adsorbent dose was 5 mg; the solution volume was 50 mL; pH was 2.2 ± 0.1

61 Fig.S4 Adsorption thermodynamics of Sb(III) adsorbed on TiO₂ NPs (a), Sb(V)

62 on TiO_2 NPs (b), Sb(III) on TiO_2 NTs (c), Sb(V) on TiO_2 NTs (d). adsorbent dose

63 was 5 mg; the solution volume was 50 mL; pH was 2.2 ± 0.1 ; The temperature

64 was 15, 20, 25, 30, 35 ℃

67 Fig.S5 Desorption thermodynamics of Sb(III) adsorbed on TiO₂ NPs, Sb(V) on

68 TiO₂ NPs, Sb(III) on TiO₂ NTs, Sb(V) on TiO₂ NTs. adsorbent dose was 5 mg;

69 the solution volume was 50 mL; desorbing agent was 0.1 mol L⁻¹ NaOH; The

70 temperature was 15, 20, 25, 30, 35 °C

Where q_e is the amount of adsorbate at equilibrium (mg g⁻¹); q_t is the amount of 80 adsorbate (mg g⁻¹) at time t (min); and K₁ (min⁻¹) and K₂ (g mg·min⁻¹) are the rate 81 constants for the pseudo first-order sorption, respectively. 82

(4)

Fig.S7 XPS spectras of Ti for TiO₂ NPs, TiO₂ NTs, TiO₂ NPs/ Sb (III), TiO₂ NPs/
Sb (V), TiO₂ NTs/ Sb (III), TiO₂ NTs/ Sb (V)

90 Fig.S8 XPS spectras of C1s for TiO₂ NPs, TiO₂ NTs, TiO₂ NPs/ Sb (III), TiO₂

91 NPs/ Sb (V), TiO₂ NTs/ Sb (III), TiO₂ NTs/ Sb (V)

96 Fig.S9 XPS spectras of O1s for TiO₂ NPs, TiO₂ NTs, TiO₂ NPs/ Sb (III), TiO₂

97 NPs/ Sb (V), TiO₂ NTs/ Sb (III), TiO₂ NTs/ Sb (V)

Fig.S10 Optimized TiO₂ {001} plane slab models for Sb(III) adsorption (a) and
Sb(V) adsorption (b), optimized TiO₂ {100} plane slab models for Sb(III)
adsorption (c) and Sb(V) adsorption (d)

As shown in Figure. 10a, two O atoms of Sb(III) bond with two Ti atoms. The bond length of Ti-O is 2.20 and 2.30 Å, respectively. As shown in Figure. 10b, three O atoms of Sb(V) bond with two Ti atoms, the Ti-O length is 2.10 Å, 2.23 Å and 2.70 Å, respectively.

Comparing to adsorption results of {001} facet, Sb(III) and Sb(V) adsorbed on {109 {100} facet is slightly loose. As shown in Figure 10c and 10d, the adsorption pattern 110 of Sb(III) adsorbed on {100} facet is same with the {001} facet. The Ti-O bond 111 length is 2.38 Å and 2.79 Å. The two O atoms of Sb(V) adsorbed on Ti atoms 112 respectively, Ti-O bond length is 2.47 Å and 3.10 Å.

Table S1 Comparison of performance of TiO₂ NTs (present study) and various adsorbents for removal of Sb from water.

Adsorbents	Concentration range (initial concentration mg L ⁻¹)	рН	Dose (g L ⁻¹)	e Adsorption amount ¹) (mg g ⁻¹)		References	
				Sb (III)	Sb (V)		
TiO ₂ NTs(Present study)	0.01-10	2.0-10.0	0.1	250.00	56.30	-	
carbon nanofibers decorated with zirconium oxide (ZrO ₂)	10-500	7.0 ± 0.2	1.0	70.83	57.17	1	
Activated alumina	5-75	2.0-11.0	1.0	-	38.00	2	
Nanoscale zero-valent iron	0-20	4.0-10.0	2.0	6.99	1.65	3	
Hematite coated magnetic nanoparticle	1-20	4.1	0.1	36.70	-	4	
Synthetic manganite	0.5-98	3.0	0.6	-	95.00	5	
Iron-zirconium bimetal oxide	0-25	7.0	0.2	-	51.00	6	
α-FeOOH	-	2.0-12.0	25.0	-	48.70	7	
Kaolinite	1	6.0	25.0	-	12.00	8	
Diatomite	10-400	6.0	4.0	35.20	-	9	

Cyanobacteria	10	2.0-7.0	0.8-20.0	4.88	-	10
Zr-MOFs	2-500	2.3-9.5	0.8	136.97	287.88	11
α -MnO ₂ Nanofibers	10-500	4.0	0.5	111.70	89.99	12
Reduced graphene oxides/Mn ₃ O ₄	10-1000	2.5-11.5	1.0	151.84	105.50	13

116	Table S2 D-R isothem parameters for Sb(III) and Sb(V) adsorption on TiO ₂ NPs and TiO ₂ NTs.							
	D-R isotherm model							
	Adsorbed types	$q_{m}' \pmod{g^{-1}}$	$\beta \text{ (mol}^2 \text{ J}^{-2}\text{)}$	R ²				
	Sb(III)+ TiO ₂ NPs	$1.24 imes 10^{-7}$	$7.67 imes 10^{-9}$	0.95				
	Sb(V)+ TiO ₂ NPs	$1.28 imes10^{-6}$	6.31 × 10 ⁻⁹	0.98				
	Sb(III)+ TiO ₂ NTs	$7.64 imes 10^{-5}$	$5.56 imes 10^{-9}$	0.97				
	Sb(V)+ TiO ₂ NTs	$1.20 imes 10^{-5}$	$7.61 imes 10^{-9}$	0.99				

0.01 e 01 **~**

			$-\Delta G^{0}(KJ mol^{-1})$						
Adsorbed types	ΔH^0 (KJ mol ⁻¹)	ΔS^0 (J mol ⁻¹ K ⁻¹)	15℃	20° ℃	25℃	30℃	35℃		
Sb(III)+TiO ₂ NPs	1.11	4.51	0.19	0.21	0.23	0.26	0.28		
Sb(V)+TiO ₂ NPs	1.58	5.98	0.14	0.17	0.20	0.23	0.26		
Sb(V)+TiO ₂ NTs	3.62	14.18	0.47	0.54	0.61	0.68	0.75		
Sb(III)+TiO ₂ NTs	1.99	8.40	0.43	0.47	0.51	0.56	0.60		

Table S3 Thermodynamics of adsorption of Sb(III) and Sb(V) on TiO₂ NPs and TiO₂ NTs

Real water		TiO ₂ NPs/Sb(III)		TiO ₂ NPs/Sb(V)		TiO ₂ NTs/Sb(III)		TiO ₂ NTs/Sb(V)		
тос	тос	TOC UV ag L ⁻¹ 465/665	Adsorbed	Removal	Adsorbed	Removal	Adsorbed	Removal	Adsorbed	Removal
			amount	efficiency	amount	efficiency	amount	efficiency	amount	efficiency
	mg L '		(mg g ⁻¹)	(%)	(mg g ⁻¹)	(%)	(mg g ⁻¹)	(%)	(mg g ⁻¹)	(%)
 Tap water	3.62	0.032	104.63	52	89.44	44	199.88	100	199.58	100
Landscape water	10.83	0.076	68.64	34	30.49	15	199.64	100	198.13	99
Treatment plant effluent	20.85	0.228	82.93	41	47.80	23	199.82	100	113.66	57

Table S4 Efficiencies of removal of Sb by $TiO_2\,NMs$ in natural water

122 **References**

- 123 1 J.M. Luo, X.B. Luo, J. Crittenden, J.H, Qu, Y.H. Bai, Y. Peng and J.H. Li, Removal 124 of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon
- nanofibers that are decorated with zirconium oxide (ZrO₂), *Environ. Sci. Technol*,
- 2015, **49**, 11115-11124.
- 127 2 Y.H. Xu, A. Ohki and S. Maeda, Adsorption and removal of antimony from
 aqueous solution by an activated alumina, *Toxicol. Environ. Chem*, 2001, 80, 145154.
- 130 3 X.Q. Zhao, X.M. Dou, D. Mohan, C.U. Pittman Jr, S.O. Yong and X. Jin,
 131 Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular
- adsorbent containing nanoscale zero-valent iron, *Chem. Eng. J*, 2014, **247**, 250-257.
- 4 C. Shan, Z.Y Ma and M.P Tong, Efficient removal of trace antimony(III) through
 adsorption by hematite modified magnetic nanoparticles, *J. Hazard. Mater*, 2014,
 268, 229-236.
- 136 5 X.Q. Wang, M.C. He, C.Y. Lin, Y.X. Gao and L. Zheng, Antimony(III) oxidation
 137 and antimony(V) adsorption reactions on synthetic manganite, *Chem. Erde.*138 *Geochem*, 2012, **72**, 41-47.
- 139 6 X.H. Li, X.M. Dou and J.Q. Li, Antimony(V) removal from water by iron zirconium bimetal oxide: performance and mechanism, *J. Environ. Sci*, 2012, 24, 1197-1203.
- 7 X.J. Guo, Z.J. Wu, M.C. He, X.G. Meng, X. Jin, N. Qiu and J. Zhang, Adsorption
 of antimony onto iron oxyhydroxides: adsorption behavior and surface structure, *J. Hazard. Mater*, 2014, 276, 339-345.
- 145 8 J.H. Xi, M.C. He and C.Y. Lin, Adsorption of antimony(V) on kaolinite as a
 146 function of pH, ionic strength and humic acid, *Environ. Earth. Sci*, 2010, **60**, 715147 722.
- 9 A. Sari, D. Çitak, M. Tuzen, Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite, *Chem. Eng. J*, 2010, 162, 521-527.
- 10 F.C. Wu, F.H. Sun, S. Wu, Y.B. Yan and B.S. Xing, Removal of antimony(III)
 from aqueous solution by freshwater cyanobacteria Microcystis biomass, *Chem. Eng. J*, 2012, **183**, 172-179
- 11 J. Li, X.D. Li, T. Hayat, A. Alsaedi and C.L. Chen, Screening of zirconium-based
 metal-organic frameworks for efficiently simultaneous removal of antimonite
 (Sb(III)) and antimonate (Sb(V)) from aqueous solution, *Acs. Sustain. Chem. Eng*,
 2017, 5, 11496-11503.
- 12 J.M. Luo, C.Z. Hu, X.Y. Meng, J. Crittenden, J.H. Qu, and P. Peng, Antimony
 removal from aqueous solution using novel α-MnO₂ nanofibers: equilibrium,
 kinetic, and density functional theory studies, *Acs. Sustain. Chem. Eng*, 2017, 5,
 2255–2264.
- 162 13 J.P. Zou, H.L. Liu, J.M. Luo, Q.J. Xing, H.M. Du, X.H. Jiang, X.B. Luo, S.L. Luo,
- and S.L. L. Suib, Three-Dimensional reduced graphene oxide coupled with Mn_3O_4
- 164 for highly efficient removal of Sb(III) and Sb(V) from water, Acs. Appl. Mater.
- 165 *Interfaces*, 2016, **8**, 18140–18149.

- 166 14 M. Pena, X. Meng, G.P. Korfiatis and C. Jing, Adsorption mechanism of arsenic
- 167 on nanocrystalline titanium dioxide, *Environ. Sci. Technol*, 2006, **40**, 1257-1262.
- 168 15 A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen, Comparative adsorption of Cu(II),
- 169 Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with
- 170 epichlorohydrin. J. Hazard. Mater, 2008, **154**, 184-91.