Supporting Information

PCN-224/rGO nanocomposite based photoelectrochemical sensor

with intrinsic recognition ability for efficient p-arsanilic acid detection

Miao Peng,^{ab} Guijian Guan,^a Hong Deng,^{ab} Bin Han,^a Chen Tian,^a Junyang Zhuang,^c Yunyun Xu,^b Weizhen Liu,^{*ab} Zhang Lin^{ab}

^a School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China
^b Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, Guangdong 510006, China

^c Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China

Content

Section 1. Supplemental experiments

Section 2. Supplemental data

Section 3. Supplemental mechanism investigation

Section 1. Supplemental experiments

Humic acid was utilized to investigate the effects of dissolved organic matter on p-ASA detection. The humic acid solution representing the level of simulated natural water was prepared as follows. The humic acid (50 mg) was dissolved in 5 mL of NaOH (1 M), then the mixed solution was diluted by deionized water to reach an apparent concentration of 50 mg/L. Next, 0.1 M HCl was used to adjust the pH of diluted humic acid to 6.0, and the adjusted solution was filtered through 0.45 μ m membrane. Finally, the obtained solution of humic acid was diluted to reach an apparent concentration of 10 mg/L and was employed to prepare experimental background solution containing 0.02 M NaCl. As for preparation of swine manure lixivium, 100 g of fresh swine manure (gained from a pig farm in Heyuan, Guangdong province in China) was dipped in water for 12 h. Then the obtained lixivium was filtered by 0.45 μ m membrane. And the filtered solution was diluted 100 times as experimental background solution.

For practical detection, the prepared simulated natural water and swine manure lixivium were spiked with $1\mu g/L$, $10 \mu g/L$, $100 \mu g/L$ and $1000 \mu g/L$ of *p*-ASA standards respectively. Then the fabricated sensor was used to detect *p*-ASA concentration in two spiked real water samples. The detailed detection process in real samples was similar to that detection in water.

Image: Constrained state stat

Section 2. Supplemental data

Fig. S1 SEM images of PCN-224 (A), PCN/rGO-0.04 (B), PCN/rGO-0.08 (C) and PCN/rGO-0.32 (D).

AFM images, GO and rGO exhibited sheet-like morphology with ultrathin thickness. The thickness of rGO at the ratio of 0.16 and 0.32 is 1.0-1.1 nm and 1.18-1.28 nm, respectively. Thus the thickness of rGO in PCN/rGO composite hardly changed when its ratio increased from 0.16 to 0.32. Thus, the amorphous particles (its ratio at 0.32) is not a result of the thicknesd GO nanosheets. The main cause of damaged crystal structure is that the high density of GO sheets hinder the coordination between TCPP and Zr-O cluster.

Fig. S3 Raman spectra of GO, PCN/rGO-0.16 samples. There are D-band shift at 1350 cm⁻¹ and G-band shift at 1590 cm⁻¹ in the Raman spectra of GO. After compounding with PCN-224, D-band shift and G-band shift remain at the same positions. However, D/G ratio of PCN/rGO-0.16 is smaller than that of pure GO, confirming GO was reduced into graphene to a certain extent during the solvothermal reaction.

Fig. S4 (A) FT-IR spectra of GO (a), PCN-224(b), PCN/rGO (c); (B) N 1s XPS spectra for PCN-224 and PCN/rGO.

Fig. S5 Electrical equivalent circuit of PCN-224 (A) and P CN/rGO (B) based on the EIS plots. For the PCN-224 electrode, we can fit the EIS curve with the equivalent circuit in A, where the electrochemical reaction is controlled by charge transfer. In contrast, for the PCN/rGO, the charge transfer rate at the interface is much fast and the mass transport also control the electrode process. Therefore, the element of Z_W representing the mass transport is added in the equivalent circuit in B.

Fig. S6 Photocurrent response of PCN-224 compounding different GO ratios.

Fig. S7 Photocurrent of PCN/rGO reacted with p-ASA under different temperature (A) and pH values (B).

Fig. S8 Two consecutive linear ranges for detection of *p*-ASA via photocurrent increment on PCN/rGO electrode:

Fig. S9 (A) As 3d XPS spectra for *p*-ASA and PCN/rGO/ASA; (B) Zr 3d and (C) C 1s spectra for PCN/rGO and PCN/rGO/ASA.

Fig. S10 SEM images of PCN/rGO/ASA (A) and PCN/rGO/ASA after PEC testing (B).

Fig. S11 The photocurrent of PCN/rGO/ASA in electrolyte (HEPES buffer) pumped argon (black curve) and air (red curve).

Fig. S12 Tauc plots of PCN/rGO (A) and PCN/rGO/ASA (B)

Fig. S13 Photocurrent response of PCN/rGO electrode in different concentrations of K₃[Fe(CN)₆].

Fig. S14 Temporal evolution of photocurrent of PCN/rGO electrode in electrolyte. In the process of PEC testing, the charging current of double layer is very high when electrode is immersed in electrolyte within the first a few seconds. In order to obtain relatively stable photocurrent response, the "light on" starts at 20 s, then the "light off" begins at 30 s (the illumination occurs at 10-second intervals).

Section 3. Supplemental mechanism investigation

The process of calculating parameters related semiconductor electrochemistry is as follows: (I) The plots with $1/C^2$ vs. applied potential at the constant frequency of 10 kHz for PCN/rGO and PCN/rGO/ASA were obtained according to the Mott-Schottky equation:¹

$$\frac{1}{C^2} = \left(\frac{2}{e\varepsilon\varepsilon_0 N_A A^2}\right) \left[V - V_{fb} - \frac{k_B T}{e}\right]$$
(1)

where C is capacitance, e is the electronic charge $(1.602 \times 10^{-19} \text{ C})$, ε_0 is the permittivity of vacuum (8.854×10⁻¹² F/m), ε is the relative permittivity of semiconductor (ε ~15.0 for the PCN/rGO), k_B is Boltzmann's constant (1.38×10⁻²³ J/K), T is the absolute temperature (298 K), N_A is the carrier density, A is the active area of the electrode (0.28 cm²), V is the applied potential and V_{fb} is the flat band potential. The fitted linear equations obtained from Mott-Schottky plots

(Fig. 5B) were $y_1 = 1.61 \times 10^{10} x_1 + 3.72$ and $y_2 = 1.17 \times 10^{10} x_2 + 1.74$ for PCN/rGO and PCN/rGO/ASA. Based on equation (1), the value of V_{fb} can be measured by intercept at zero on the potential axis of Mott-Schottky plot. The V_{fb} calculated from the above fitted equations was - 2.3 V and -1.5 V (vs. Ag/AgCl) for PCN/rGO and PCN/rGO/ASA. The V_{fb} is considered to be close to the conduction band (CB) edges of the n-type semiconductor,² thus the CB positions of PCN/rGO and PCN/rGO/ASA were about -2.3 V and -1.5 V (vs. Ag/AgCl), respectively (see Fig. 5C).

(II) The carrier density, N_A, was estimated from the slope of the Mott-Schottky plots using the following equation:³

$$N_A = \frac{2}{e\varepsilon\varepsilon_0 S_{MS} A^2} \tag{2}$$

where S_{MS} is the slope which can be obtained from the above fitted equations $(1.61 \times 10^{10} \text{ for PCN/rGO}, 1.17 \times 10^{10} \text{ for PCN/rGO/ASA})$ and A is the active area of the electrode (0.28 cm²). Hence, the charge carrier density was calculated to be $5.84 \times 10^{20} \text{ cm}^{-3}$ for PCN/rGO and $8.04 \times 10^{20} \text{ cm}^{-3}$ for PCN/rGO/ASA.

(III) The width of depletion layer (W) can be calculated according to the equation:⁴

$$V_{SC} = -\left(\frac{e_0 N_D}{2\varepsilon\varepsilon_0}\right) W^2 \tag{3}$$

where V_{SC} is space-charge capacitance of semiconductor (equal to band bending). V_{SC} was found to be 2.2 V and 1.4 V for PCN/rGO and PCN/rGO/ASA based on the difference between conduction band edge and bias voltage. Hence the width of depletion layer estimated from equation (3) was 2.5×10^{-7} cm and 1.69×10^{-7} cm for PCN/rGO and PCN/rGO/ASA, respectively. (IV)The strength of the electric field (E) is determined by the ratio of potential difference (band bending) to the width of the depletion layer:

$$E = \frac{V_{SC}}{W} \tag{4}$$

In terms of equation (4) and the above calculation results, the E are 8.84×10^6 V/cm and 8.22×10^6 V/cm for the PCN/rGO and PCN/rGO/ASA, respectively.

References

1. C. Li, Y. Li and J.-J. Delaunay, A novel method to synthesize highly photoactive Cu₂O

microcrystalline films for use in photoelectrochemical cells, *ACS Appl. Mater. Interfaces*, 2013, **6**, 480-486.

- J. Lin, Y. Dong, Q. Zhang, D. Hu, N. Li, L. Wang, Y. Liu and T. Wu, Interrupted chalcogenide-based zeolite-analogue semiconductor: atomically precise doping for tunable electro-/photoelectrochemical properties, *Angew. Chem.*, 2015, **127**, 5192-5196.
- J. N. Nian, C. C. Tsai, P. C. Lin and H. Teng, Elucidating the conductivity-type transition mechanism of p-type Cu₂O films from electrodeposition, *J. Electrochem. Soc.*, 2009, 156, S163-S163.
- K. Rajeshwar, in *Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry*, ed. S. Licht, Wiley-VCH, Weinheim, 2001, pp. 10.