# Transcriptomic and microRNAomic profiling reveals molecular mechanisms to cope with silver nanoparticle exposure in *Euplotes vannus*

Yongbo Pan,<sup>a</sup> Wenjing Zhang,<sup>\*a</sup> Senjie Lin,<sup>ab</sup>

<sup>a</sup> State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center,

Xiamen University, Xiamen 361005, China

<sup>b</sup> Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA

## **Supplementary Information**

#### Summary

The supplementary information includes materials and methods, five figures and nine tables.

#### Materials and Methods

The *E. vannus* were treatment with 15 mg/L AgNP (1/2 12h-LC<sub>50</sub>) for 0, 1, 3, 6, 12 and 24 hours, samples were harvested at each time point by filtered with a 20 µm pore-size sieve and washed with Oshima's artificial seawater for five times in order to mechanically remove nanoparticles and bacteria. Then the samples were used for detected various parameters.

(1) Detected the bioaccumulation. The *E. vannus* were dried at 80 °C for two days to obtain a constant weight, and transferred to a digestion tube. Then, 1 mL of 65% nitric acid were added to the tube, and the *E. vannus* individuals were digested at room temperature for 8 hours and 100 °C for 8 hours. The digestion samples were dilution with 3% nitric acid and analysis by ICP-MS (Agilent 7700X, USA). Ag bioaccumulation was quantified on the basis of the dry weight (dry wt) of the *E. vannus* ( $\mu$ g g<sup>-1</sup> dry wt).

(2) Determination of ROS content. H2DCFDA was used to determine the amount of ROS generated in the *E. vannus*. All of the samples were centrifuged first and then resuspended in PBS buffer (pH 7.2). H2DCFDA was added to this suspension to a final concentration of 0.1 mM and mixed well. The mixture was incubated at 25 °C in the dark for 30 min. After being stained, the cells were rinsed and their fluorescence intensity was detected by flow cytometer in the FL1 channel (BD C6, USA) and Olympus BX51 microscope (Olympus Optical, Tokyo, Japan).

(3) Lipid peroxidation assay. Lipid peroxidation was monitored by measuring malondiadehyde (MDA), a stable end product of lipid peroxidation cascades using an MDA assay kit (Beyotime Co., China). *E. vannus* were lysis with Western and IP lysis buffer (in 1 % PMSF; Beyotime Co., China), then cell homogenates were centrifuged at 16000 x g at 4°C for 10 min. The supernatant was used for MDA assay and protein determination. The total protein concentrations were measured using BCA Protein assay kit (Beyotime Co., China) according to the manufacturer's instructions. For MDA measurement, 100  $\mu$ l samples were added into a 15-ml tube followed by addition of 200  $\mu$ l MDA working solution. The mixture was heated at 100°C for 15 min, chilled to room temperature, and centrifuged at 1,000 x g for 10 min. Supernatants of 200  $\mu$ l were transferred to 96-well plates, and the absorbance of each group was read with an Infinite M200 Pro plate reader (Tecan, Switzerland) at 532 nm.

(4) Determination of ATP levels. Intracellular ATP levels were determined using the luciferin-luciferase-based ATP luminescence assay kit (Beyotime Co., China) as instructed by the manufacturer.

(5) Determination of GPx and Gr activity. The enzyme activities of GPx and Gr were determined by specific assay kits purchased from Beyotime Co., China and carried out according to the manufacturer's instructions. The enzyme activities were expressed as U/ mg protein.

#### Figures



Figure S1. Characterization of AgNPs. (A) Scanning electron microscopy image of<br/>AgNPs. (B) Transmission electron microscopy image of AgNPs. (C) UV-Vis<br/>absorption spectra. (D) Ag<sup>+</sup> dissolution rate. (E) Zeta potential. (F) The size distribution.<br/>(C)-(F) were performed in exposure medium at 15 mg/L AgNPs. Scale bars represent<br/>100 nm. T0: 0 hour; T12: 12 hour.



**Figure S2.** ROS production in *E. vannus* induced by AgNPs. *E. vannus* were treated with increasing time by 15 mg/L AgNPs. Images were taken on an Olympus BX51 microscope. T0: control; T1: treated with 1 hour; T12: treated with 12 hours.



**Figure S3.** Gene annotation of *E. vannus* transcripts using gene ontology (GO) and KOG database. (A) Gene Ontology analysis of unigenes; (B) KOG-based functional classification.



Figure S4. Length and number distribution of microRNA detected from *E. vannus*.



Figure S5. The mRNA and microRNA relative expression levels detected by qPCR and RNA-seq. Error bars indicate  $\pm$  s.d. of biological triplicates.

### Tables

| Sample | Base Number (Gb) | Raw reads  | Clean reads | Mapped reads | %≥Q30 |
|--------|------------------|------------|-------------|--------------|-------|
| T0-01  | 6.31             | 21,972,106 | 21,204,281  | 17,995,730   | 90.66 |
| T0-02  | 7.64             | 27,033,067 | 25,606,570  | 21,529,026   | 90.71 |
| T0-03  | 7.09             | 26,281,530 | 23,776,464  | 20,214,840   | 90.80 |
| T1-01  | 7.07             | 25,818,673 | 23,739,691  | 20,129,465   | 90.97 |
| T1-02  | 6.00             | 21,410,674 | 20,070,546  | 16,850,689   | 90.54 |
| T1-03  | 9.42             | 33,814,356 | 31,475,470  | 26,550,135   | 89.79 |
| T12-01 | 7.77             | 27,175,226 | 26,097,176  | 22,077,648   | 90.91 |
| T12-02 | 8.11             | 28,980,661 | 27,153,056  | 22,916,490   | 90.07 |
| T12-03 | 8.66             | 30,544,186 | 29,030,314  | 24,809,499   | 90.47 |

 Table S1. Illumina sequencing statistics of mRNA dataset.

| Table S2. Overview of the transcript annotation. |
|--------------------------------------------------|
|--------------------------------------------------|

| Annotation database                | Number of Unigenes | Percentage (%) |
|------------------------------------|--------------------|----------------|
| Annotated in COG                   | 19069              | 20.88          |
| Annotated in GO                    | 14950              | 16.37          |
| Annotated in KEGG                  | 19539              | 21.39          |
| Annotated in KOG                   | 26766              | 29.30          |
| Annotated in PFAM                  | 33081              | 36.22          |
| Annotated in SwissProt             | 21192              | 23.20          |
| Annotated in eggNOG                | 37920              | 41.51          |
| Annotated in NR                    | 37555              | 41.11          |
| Shared annotated in all Databases  | 6259               | 6.85           |
| Annotated in at least one Database | 46917              | 51.36          |
| Total Unigenes                     | 91343              | 100            |

| Sample | Raw reads  | <b>Clean reads</b> | Mapped reads | %≥Q30 |
|--------|------------|--------------------|--------------|-------|
| T0-01  | 21,574,969 | 14,907,124         | 5,996,255    | 98.91 |
| Т0-02  | 18,706,046 | 12,389,359         | 5,598,748    | 98.66 |
| Т0-03  | 16,840,337 | 12,128,375         | 5,509,306    | 98.92 |
| T1-01  | 27,690,617 | 19,267,428         | 7,338,891    | 98.59 |
| T1-02  | 23,013,322 | 16,427,038         | 7,485,366    | 98.86 |
| T1-03  | 20,503,595 | 14,996,338         | 6,903,114    | 98.69 |
| T12-01 | 19,834,473 | 13,551,290         | 4,994,575    | 98.77 |
| T12-02 | 19,318,577 | 13,256,688         | 5,235,088    | 98.90 |
| T12-03 | 18,994,517 | 11,991,804         | 4,580,841    | 98.81 |
|        |            |                    |              |       |

**Table S3.** Illumina sequencing statistics of microRNA dataset.

**Table S4.** Differentially expressed of microRNA and their target gene number at each comparison groups.

|             | T1 <i>vs.</i> T0 |                |       | T12 <i>vs.</i> T0 |        |         | T12 <i>vs.</i> T1 |           |        | Target  | DEG    |           |                |        |
|-------------|------------------|----------------|-------|-------------------|--------|---------|-------------------|-----------|--------|---------|--------|-----------|----------------|--------|
| microRNA    | log2FC           | <i>p</i> value | FDR   | regulated         | log2FC | p value | FDR               | regulated | log2FC | p value | FDR    | regulated | Gene<br>number | number |
| eva-miR-N1  | 1.35             | 0.018          | 0.583 | up                | —      | —       | —                 | —         | -1.11  | 0.050   | 0.791  | down      | 167            | 38     |
| eva-miR-N2  | 6.16             | <0.001         | 0.003 | up                | —      | —       | —                 | —         | -2.04  | 0.031   | 0.733  | down      | 367            | 113    |
| eva-miR-N3  | 1.95             | 0.013          | 0.491 | up                | —      | —       | —                 | —         | -2.46  | 0.005   | 0.169  | down      | 499            | 111    |
| eva-miR-N4  | 1.28             | 0.011          | 0.491 | up                | —      | —       | —                 | —         | -1.17  | 0.005   | 0.169  | down      | 95             | 17     |
| eva-miR-N5  | 5.38             | 0.001          | 0.074 | up                | —      | —       | —                 | —         | —      | —       | _      | —         | 117            | 27     |
| eva-miR-N6  | 1.44             | 0.031          | 0.843 | up                | 1.11   | 0.047   | 0.813             | up        | —      | —       |        | —         | 1038           | 248    |
| eva-miR-N7  | 1.16             | 0.006          | 0.383 | up                | 2.12   | <0.001  | <0.001            | up        | —      | —       | —      | —         | 417            | 127    |
| eva-miR-N8  | 4.49             | 0.041          | 0.957 | up                | 4.72   | 0.019   | 0.505             | up        | —      | —       |        | —         | 540            | 151    |
| eva-miR-N9  | —                | —              | —     | —                 | 4.41   | 0.039   | 0.745             | up        | —      | —       | —      | —         | 220            | 71     |
| eva-miR-N10 | —                | —              | —     | —                 | 3.33   | <0.001  | <0.001            | up        | 2.33   | 0.03    | <0.001 | up        | 303            | 108    |
| eva-miR-N11 | —                | —              | _     | —                 | 3.92   | <0.001  | <0.001            | up        | 1.91   | 0.003   | 0.152  | up        | 194            | 56     |
| eva-miR-N12 | _                | _              | _     | _                 | 1.68   | 0.03    | 0.706             | up        | 1.55   | 0.036   | 0.733  | up        | 175            | 51     |
| eva-miR-N13 | —                | —              | _     | —                 | —      | —       | —                 | —         | 2.10   | 0.036   | 0.733  | up        | 19             | 4      |
| eva-miR-N14 | _                | _              | _     | _                 | —      | —       | _                 | _         | 2.65   | 0.039   | 0.733  | up        | 205            | 47     |
| eva-miR-N15 | _                | _              | _     | _                 | -1.36  | <0.001  | 0.002             | down      | _      | _       | _      | _         | 653            | 121    |
| eva-miR-N16 | _                | _              | _     | _                 | -1.45  | 0.003   | 0.086             | down      | —      | —       | _      | —         | 162            | 18     |

| Group      |    | Term name                                | Gene count | Fold Enrichment | Benjamini |
|------------|----|------------------------------------------|------------|-----------------|-----------|
| T12 vs. T0 | BP | macropinocytosis                         | 240        | 1.6             | 5.50E-15  |
|            |    | translation                              | 86         | 1.5             | 3.90E-02  |
|            | CC | phagocytic vesicle                       | 71         | 2.1             | 6.50E-08  |
|            |    | ribosome                                 | 54         | 1.8             | 3.70E-03  |
| T12 vs. T1 | BP | DNA replication                          | 30         | 3.5             | 1.20E-06  |
|            |    | DNA-dependent DNA replication            | 9          | 7.1             | 2.20E-03  |
|            |    | phosphorylation                          | 58         | 1.7             | 1.70E-02  |
|            |    | DNA replication initiation               | 10         | 4.8             | 1.90E-02  |
|            |    | macropinocytosis                         | 116        | 1.4             | 2.00E-02  |
|            |    | protein phosphorylation                  | 54         | 1.7             | 3.40E-02  |
|            | CC | nucleus                                  | 177        | 1.3             | 9.90E-03  |
|            |    | microtubule associated complex           | 25         | 2.2             | 4.10E-02  |
|            |    | proteasome complex                       | 17         | 2.6             | 4.00E-02  |
|            | MF | transferase activity                     | 108        | 1.5             | 9.40E-04  |
|            |    | ATP binding                              | 166        | 1.3             | 2.70E-03  |
|            |    | kinase activity                          | 61         | 1.7             | 6.50E-03  |
|            |    | DNA binding                              | 64         | 1.6             | 2.10E-02  |
|            |    | 3'-5' DNA helicase activity              | 7          | 6.4             | 2.10E-02  |
|            |    | protein serine/threonine kinase activity | 53         | 1.6             | 2.50E-02  |
|            |    | protein kinase activity                  | 49         | 1.6             | 3.20E-02  |

**Table S5**. Biological processes (BP), Cellular components (CC) and Molecular function (MF) enriched in all DEGs in each comparison groups with corrected Benjamini p-value < 0.05.

**Table S6.** KEGG enrichment analysis of the target genes of the up-regulated and downregulated microRNA in each comparison groups. Shown are significantly enriched pathways (corrected Benjamini *p*-value < 0.05).

| Group                    | Term name                  | Gene count | Fold Enrichment | Benjamini |
|--------------------------|----------------------------|------------|-----------------|-----------|
| T1 vs. T0                | FoxO signaling pathway     | 38         | 2.3             | 1.18E-04  |
| Up-miRNA                 | cAMP signaling pathway     | 44         | 2.1             | 1.98E-04  |
|                          | mTOR signaling pathway     | 38         | 1.9             | 2.36E-03  |
|                          | Autophagy                  | 39         | 1.5             | 2.98E-02  |
|                          | RNA degradation            | 19         | 1.8             | 4.30E-02  |
|                          | Calcium signaling pathway  | 22         | 1.7             | 4.67E-02  |
|                          |                            |            |                 |           |
| T12 vs. T0               | cAMP signaling pathway     | 40         | 2.2             | 6.64E-05  |
| Up-miRNA                 | Calcium signaling pathway  | 26         | 2.4             | 4.67E-04  |
|                          | Autophagy                  | 38         | 1.8             | 4.15E-03  |
|                          | cGMP-PKG signaling pathway | 24         | 2.0             | 6.79E-03  |
|                          | mTOR signaling pathway     | 31         | 1.8             | 8.61E-03  |
|                          | FoxO signaling pathway     | 25         | 1.8             | 2.34E-02  |
|                          |                            |            |                 |           |
| T12 vs. T1               | Apoptosis                  | 12         | 3.0             | 2.07E-02  |
| Up-miRNA                 | cGMP-PKG signaling pathway | 11         | 2.9             | 3.17E-02  |
|                          |                            |            |                 |           |
| T12 vs. T1<br>Down-miRNA | FoxO signaling pathway     | 17         | 2.8             | 4.03E-02  |

**Table S7**. Biological processes (BP), Cellular components (CC) and Molecular function (MF) enriched of the microRNA target genes in each comparison groups with corrected Benjamini *p*-value < 0.05.

| Group      |     | Torm nome                                              |       | Fold       | Doniomini |
|------------|-----|--------------------------------------------------------|-------|------------|-----------|
| Group      |     |                                                        | count | Enrichment | Бепјашш   |
| T1 vs. T0  | BP  | phosphorus metabolic process                           | 91    | 1.8        | 1.89E-06  |
| Up-miRNA   |     | phosphate-containing compound metabolic process        | 86    | 1.8        | 1.90E-05  |
|            |     | phosphorylation                                        | 61    | 2.0        | 3.37E-05  |
|            |     | cellular protein modification process                  | 50    | 1.9        | 2.10E-03  |
|            |     | protein modification process                           | 50    | 1.9        | 2.10E-03  |
|            |     | macromolecule modification                             | 53    | 1.8        | 2.24E-03  |
|            |     | protein phosphorylation                                | 29    | 2.4        | 2.68E-03  |
|            | MF  | protein kinase activity                                | 93    | 2.4        | 5.97E-14  |
|            |     | phosphotransferase activity, alcohol group as acceptor | 98    | 2.3        | 1.45E-13  |
|            |     | transferase activity                                   | 244   | 1.5        | 2.50E-10  |
|            |     | catalytic activity, acting on a protein                | 125   | 1.7        | 2.01E-08  |
|            |     | protein serine/threonine kinase activity               | 38    | 2.4        | 2.30E-05  |
|            |     | catalytic activity                                     | 485   | 1.1        | 4.47E-05  |
| T12 vs. T0 | BP  | phosphorus metabolic process                           | 74    | 1.9        | 5.20E-06  |
| Up-miRNA   |     | phosphorylation                                        | 51    | 2.2        | 2.70E-05  |
|            |     | phosphate-containing compound metabolic process        | 70    | 1.9        | 3.61E-05  |
|            |     | protein phosphorylation                                | 23    | 2.5        | 1.41E-02  |
|            | ME  | transferase activity, transferring                     | 140   | 1.0        | 7946 14   |
|            | NIF | phosphorus-containing groups                           | 149   | 1.9        | /.04E-14  |
|            |     | kinase activity                                        | 111   | 2.0        | 1.23E-11  |
|            |     | transferase activity                                   | 204   | 1.5        | 2.48E-10  |
|            |     | protein kinase activity                                | 73    | 2.4        | 3.04E-10  |
|            |     | phosphotransferase activity, alcohol group as acceptor | 76    | 2.2        | 1.50E-09  |
|            |     | catalytic activity                                     | 399   | 1.1        | 2.17E-06  |
|            |     | protein serine/threonine kinase activity               | 32    | 2.5        | 6.56E-05  |
|            |     | catalytic activity, acting on a protein                | 93    | 1.6        | 1.05E-04  |
| T12 vs. T1 | MF  | phosphotransferase activity, alcohol group as acceptor | 39    | 2.4        | 3.56E-05  |
| Down-miRNA |     | transferase activity,                                  | 66    | 1.0        | 6 20E 05  |
|            |     | transferring phosphorus-containing groups              | 00    | 1.8        | 0.20E-03  |
|            |     | protein kinase activity                                | 35    | 2.4        | 9.23E-05  |
|            |     | kinase activity                                        | 49    | 1.9        | 2.51E-04  |
|            |     | transferase activity                                   | 91    | 1.4        | 1.19E-03  |
|            |     | catalytic activity, acting on a protein                | 49    | 1.8        | 1.22E-03  |

| Sequence ID     | Gene name                    | Forward Primer          | Reverse Primer          |
|-----------------|------------------------------|-------------------------|-------------------------|
| mRNA            |                              |                         |                         |
| MG999513        | 18S                          | ACAATTGGAGGGCAAGTCTG    | CCAGAAATCCAACTACGAGCA   |
| c22466.graph_c0 | G1/S-specific cyclin-E       | TGGCTCCAAGAGTGTTGTGAA   | TGAAGGCAATCAGAAGTCACG   |
| c46962.graph_c0 | G2/mitotic-specific cyclin-B | TCTCTGGAGGAGATGCTGGA    | AATGGATGGTCTGCTGGTGA    |
| c41561.graph_c0 | Glutathione reductase        | GAGCCGTCAGCATTCTTGTC    | TCTTGGCAGGACTTGGATCA    |
| c54336.graph_c0 | BAX inhibitor 1              | GGTCAATCTCAGCGGCTCTT    | TGGATTCCTCCTCCTCTCTATCA |
| c55100.graph_c0 | p34-cdc2                     | AAGTCATGCAGGTGGCTCTG    | GCCAGGAGTCAGCGAACTT     |
| c55459.graph_c0 | L-ascorbate peroxidase       | GCGCTTATGCTGCTCTTGAA    | GCGACAATCTCATCGTCTGAA   |
| c37802.graph_c0 | Copper transporting ATPase 2 | GGCAAGGCAAGATTCACCAG    | TCAGCGGTAAGGAAGAGGTCA   |
| c23622.graph_c0 | SOD-Fe                       | GGCTGTTGCGGTAGTCAATG    | GGCCACTTCGGTTCTGGTT     |
| c18811.graph_c1 | Thioredoxin peroxidase       | CTCCAAGGCTTACGGATGCT    | GGCACACTTCTCCATTCTCATC  |
| c46357.graph_c0 | Glutathione s-transferase    | TCTGAAGAACGGCAGGATCA    | CCATCCAACTGTGGTTCCAA    |
| c20873.graph_c0 | Glutathione peroxidase       | CCTGGTAATGGTCAGGTATGGA  | ACATTCTGCAAGCGCAATTC    |
| c30192.graph_c0 | Glutathione synthetase       | AGTCCTTCACAGTACCTCGATCA | AATTGCAGCATCCGATCATT    |
| microRNA        |                              |                         |                         |
| eva-miR-N7      |                              | CTGAAGGTGCTCACTGACA     |                         |
| eva-miR-N10     |                              | TCCTAGCCCTGTCACTACAA    |                         |
| eva-miR-N15     |                              | TTTGGTGTGATTTTGGCTCGG   |                         |

 Table S8. Oligonucleotide primers used in this work.

|                 |                                    |           | Regulated  |            |  |  |
|-----------------|------------------------------------|-----------|------------|------------|--|--|
| Sequence ID     | Swissprot annotation               | T1 vs. T0 | T12 vs. T0 | T12 vs. T1 |  |  |
| c51365.graph_c0 | ABC transporter A family member 1  | normal    | down       | down       |  |  |
| c34769.graph_c0 | ABC transporter A family member 10 | normal    | up         | normal     |  |  |
| c51764.graph_c0 | ABC transporter A family member 2  | down      | down       | normal     |  |  |
| c36462.graph_c0 | ABC transporter A family member 2  | up        | normal     | normal     |  |  |
| c43331.graph_c0 | ABC transporter A family member 2  | normal    | down       | normal     |  |  |
| c27769.graph_c0 | ABC transporter A family member 2  | up        | up         | normal     |  |  |
| c51585.graph_c0 | ABC transporter A family member 3  | normal    | normal     | down       |  |  |
| c50870.graph_c0 | ABC transporter A family member 5  | up        | normal     | down       |  |  |
| c35730.graph_c1 | ABC transporter A family member 5  | normal    | down       | down       |  |  |
| c35730.graph_c0 | ABC transporter A family member 5  | normal    | down       | down       |  |  |
| c35511.graph_c0 | ABC transporter A family member 7  | normal    | down       | normal     |  |  |
| c49503.graph_c1 | ABC transporter B family member 2  | normal    | down       | down       |  |  |
| c50197.graph_c0 | ABC transporter B family member 3  | normal    | up         | normal     |  |  |
| c49503.graph_c0 | ABC transporter B family member 3  | normal    | normal     | down       |  |  |
| c51489.graph_c0 | ABC transporter B family member 3  | normal    | down       | down       |  |  |
| c44749.graph_c0 | ABC transporter B family member 5  | up        | normal     | down       |  |  |
| c19326.graph_c1 | ABC transporter B family member 5  | normal    | normal     | down       |  |  |
| c53881.graph_c0 | ABC transporter B family member 5  | up        | up         | normal     |  |  |
| c19326.graph_c0 | ABC transporter B family member 6  | up        | normal     | normal     |  |  |
| c44185.graph_c0 | ABC transporter C family member 10 | normal    | up         | normal     |  |  |
| c25690.graph_c0 | ABC transporter C family member 12 | down      | down       | normal     |  |  |
| c52069.graph_c0 | ABC transporter C family member 12 | normal    | down       | down       |  |  |
| c49354.graph_c0 | ABC transporter C family member 3  | normal    | up         | up         |  |  |
| c30574.graph_c0 | ABC transporter C family member 3  | normal    | up         | up         |  |  |
| c42211.graph_c0 | ABC transporter C family member 6  | normal    | normal     | up         |  |  |
| c39151.graph_c1 | ABC transporter C family member 6  | normal    | down       | normal     |  |  |
| c48079.graph_c0 | ABC transporter F family member 2  | normal    | up         | normal     |  |  |
| c36976.graph_c0 | ABC transporter G family member 18 | normal    | normal     | up         |  |  |
| c43032.graph_c0 | ABC transporter G family member 18 | normal    | up         | up         |  |  |
| c46036.graph_c0 | ABC transporter G family member 18 | normal    | up         | normal     |  |  |

## **Table S9.** Summarize the differentially expressed of ABC transporter family genes.