Electronic Supplementary Information for

A novel multi-flaws MoS₂ nanosheets piezocatalyst with superhigh degradation efficiency for ciprofloxacin

Wei Ma, ^{a,c} Binghua Yao, ^{*a,c} Wen Zhang, ^{*b} Yangqing He, ^a Yan Yu, ^{a,d} Jinfen Niu, ^a and Cheng Wang ^a

^a Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048 China

^b Department of Civil Engineering, University of Arkansas, Fayetteville 72701, USA

^cThe key Laboratory of Northwest Water Resources and Environmental Ecology of Ministry of Education, Xi'an University of Technology, Xi'an 710048 China

^d Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, 726000, China

* Corresponding author: Tel.: +086 029 82066361.

E-mail address: <u>bhyao@xaut.edu.cn</u> (B.H. Yao), wenzhang@uark.edu (W. Zhang).

Text S1

Analytical methods

The primary aromatic intermediates were separated on an Agilent TC-C18 column (150×4.6 mm i.d., 2.7 µm) using a gradient elution. The mobile phase was consisted of solvent A (high-purity water, pH 3.0, adjusted by formic acid) and solvent B (methanol, pH 3.0, adjusted by formic acid). The gradient elution program was as follows: gradient 10%–20% B at 0–6 min, 20%–30% B at 6–8 min, then keeps the 30% B at 8–12 min. The flow rate was kept at 0.5 mL·min⁻¹, and the injection volume was 50 µL.

Fig. S1 TEM images of multi-flaw MoS₂ with cracks and voids on basal plane.

Fig. S2 XRD patterns of multi-flaw MoS₂, flaw-free MoS₂ and commercial MoS₂

Fig. S3 full-scan XPS spectra of multi-flaw and flaw-free MoS₂

Fig. S4 cycling runs for the piezocatalytic degradation of CIP in the presence of multi-flaw ${\rm MoS}_2$

Fig. S5 the UPLC chromatogram of CIP solution at 0 sec (black line) and 30 sec (red line) of ultrasonic irridation

Catalysts	Kinetic	Win dia and	CIP (20 mg/L)	
, ,	models	Kinetic equations	k	R^2
	2	y = 0.135x + 0.4609	$k_{a1} = 0.13571 \text{ L/mg} \cdot \text{s} (0-20\text{s})$	0.994
Multi-flaw MoS ₂		y = 1.29 x - 22.68	$k_{a2} = 1.29034 \text{ L/mg} \cdot \text{s} (20-30\text{s})$	0.981
Flaw-free MoS ₂	1	y = 0.0112x + 0.644	0.01124 s ⁻¹	0.994
Commercial MoS ₂	1	y = 0.00745x + 0.486	0.00745 s ⁻¹	0.975

Table S1. The kinetic parameters for piezocatalytic degradation of CIP solution.

Product No.	Molecular ion [M+H]⁺(<i>m/z</i>)	R.T. (min)	Molecular Formula	Proposed Molecular Structure
A	116	2.39	$C_4H_4O_4$	
В	115	2.57	C4H4O3N	
С	197	2.97	$C_8H_8O_4N_2$	
D	171	3.12	$C_7H_7O_2N_2F$	F H ₂ N NH ₂
Е	169	3.71	$C_7H_8O_2N_3$	HO H ₂ N N N O
F	126	4.05	C ₆ H ₇ O ₂ N	H ₂ N OH
G	109	4.71	C ₆ H ₇ ON	H ₂ N OH
Н	213	4.92	$C_{10}H_{13}O_2N_2F$	
I	147	5.37	C ₉ H ₉ ON	NH2

 Table S2. Main intermediates identified by UPLC /MS during the piezocatalytic degradation of ciprofloxacin

Products No.	Molecular ions [M+H]+ (<i>m/z</i>)	R.T. (min)	Molecular Formulas	Proposed Molecular Structures
J	133	5.51	C ₉ H ₈ O	
K	219	5.61	C ₁₂ H ₁₁ ON ₂ F	H_2N
L	365	6.03	$C_{17}H_{20}O_5N_3F$	
Μ	203	7.11	C ₁₂ H ₁₀ ONF	F N N
N	360	9.96	C ₁₇ H ₁₄ O ₅ N ₃ F	

Continued Table S2

Degradation times	TC (mg L ⁻¹)	IC (µg L ⁻¹)	TOC (mg L^{-1})	Mineralization (%)
0	19.75	581.2	19.17	0
30 s	18.49	357.1	18.13	5.42
1 min	17.81	744.6	17.07	10.95
2 min	15.82	481.9	15.34	19.98
3 min	13.31	435.1	12.87	32.86
4 min	10.89	944.6	9.95	48.09
5 min	9.17	740.0	8.43	56.02

Table S3. Total carbon (TC), inorganic carbon (IC), TOC, and mineralization of CIP solution at different degradation times.