Electronic Supplementary Information

Quasi Single Cobalt Sites in Nanopores for Superior Catalytic Oxidation of Organic Pollutants

Yu Yin^{1,2,3}, Hong Wu¹, Lei Shi¹, Jinqiang Zhang¹, Xinyuan Xu¹, Huayang Zhang², Shaobin Wang^{2,*}, Mika Sillanpää⁴, and Hongqi Sun^{1,*}

¹ School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia.

² School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.

³ School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

⁴ Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.

*Corresponding Authors.

Email: <u>h.sun@ecu.edu.au</u> (H. Sun); <u>shaobin.wang@adelaide.edu.au</u> (S. Wang).

Figure S1. (A) Low-angle and (B) wide-angle XRD patterns for the samples of 0.5AP-CoS, 1.0AP-CoS and 5.0AP-CoS.

Figure S2. TEM images of the samples of (A) SBA-15, (B) 0.5QS-CoS, (C) 1.0QS-CoS, and (D) 5.0QS-CoS. Scale bars: 50 nm.

Figure S3. TEM images of the samples of (A) SBA-15, (B) 0.5AP-CoS, (C) 1.0AP-CoS, and (D) 5.0AP-CoS. Scale bars: 50 nm.

Figure S4. (A) N_2 adsorption-desorption isotherms and pore size distributions calculated by (B) adsorption and (C) desorption branches of the isotherms of 0.5AP-CoS, 1.0AP-CoS, and 5.0AP-CoS samples. Curves are plotted offset for clarity.

Figure S5. FTIR spectra of QS-CoS samples (A) before and (B) after calcination.

Figure S6. FTIR spectra of AP-CoS samples (A) before and (B) after calcination.

Figure S7. (A) TG and (B) DTG curves of AP-CoS samples before calcination. DTG curves are plotted offset for clarity.

Figure S8. (A) TG and (B) DTG curves of QS-CoS samples before calcination. DTG curves are plotted offset for clarity.

Figure S9. Phenol adsorption and oxidation on 0.5AP-CoS, 1.0AP-CoS and 5.0AP-CoS. ([Catalyst]₀ = 0.2 g·L⁻¹, [PMS]₀= 2.0 g·L⁻¹, [T] = 25 °C, and [Phenol]₀ = 20 mg·L⁻¹).

Figure S10. First order kinetic modeling of the 3.0QS-CoS sample on phenol degradation reaction with and without quenching agent, the lines are fitted results. ($[Catalyst]_0 = 0.2 \text{ g} \cdot \text{L}^{-1}$, $[PMS]_0 = 2.0 \text{ g} \cdot \text{L}^{-1}$, [T] = 25 °C, and $[Phenol]_0 = 20 \text{ mg} \cdot \text{L}^{-1}$).

Scheme S1. The close-packed monolayer model of Co₃O₄

Table S1. Textural properties of 0.5AP-CoS, 1.0AP-CoS and 5.0AP-CoS samples

	Co content	$S_{\rm BET}$	V _p	$D_{\rm p}$ (nm)	
Sample	$(\text{mmol} \cdot \text{g}^{-1} \text{ (SBA-15)})$	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	adsorption	desorption
0.5AP-CoS	0.52	588	0.748	7.6	6.1, 4.2
1.0AP-CoS	1.02	527	0.704	7.6	6.1, 3.7
5.0AP-CoS	4.99	429	0.531	7.9	6.4, 4.2

 Table S2. Kinetic results of the 3.0QS-CoS sample on phenol degradation reaction.

Samula	Reaction rate constant k	\mathbb{R}^2 of k	
Sample	(\min^{-1})		
Original	0.32	1.000	
+ TBA	0.23	0.982	
+ EtOH	0.04	0.979	