Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2019

Supplementary material for

# Protein Corona Formed on Silver Nanoparticles in Blood Plasma is Highly Selective and Resistant to Physicochemical Changes of the Solution

Vladimir Gorshkov<sup>1#\*</sup>, Julia A. Bubis<sup>2,3#</sup>, Elizaveta M. Solovyeva<sup>2,3#</sup>, Mikhail V. Gorshkov<sup>2</sup>, Frank Kjeldsen<sup>1\*</sup>

<sup>1</sup> Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark

<sup>2</sup> V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

<sup>3</sup> Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia

# Authors contributed equally

\* Corresponding author; Address: Campusvej 55, 5230 Odense M, Denmark; e-mail: <u>vgor@bmb.sdu.dk</u>; <u>frankk@bmb.sdu.dk</u>

#### **Materials and Methods**

## Protein corona preparation

Nanoparticles (3 mL stock solution) were concentrated by centrifugation (5000g, 10 min, 4°C) followed by the addition of 300  $\mu$ L of pooled normal human blood plasma (Innovative Research, USA) (41.4  $\mu$ L of plasma per cm<sup>2</sup> of particle surface). For pH experiments, the pH of blood plasma was adjusted by adding an equal amount of phosphate-citrate buffer solution or Tris-HCl buffer solution (20.7  $\mu$ L of plasma per cm<sup>2</sup> of particle surface). The pH of the solution after mixing was measured by micro pH-meter (MP220, Mettler Toledo). Nanoparticles were incubated with plasma in thermoshaker (800 rpm) for 4 hours at pH 4.9, 6.1, 6.8, 7.7, 8.9 and constant temperature 30°C or, at temperature 4, 17, 30, 41, 47°C and constant pH 7.9. Corona formation was confirmed by DLS (typical particle diameter after the incubation was ~ 200 nm). Nanoparticles bearing protein corona were separated by centrifugation (10000g, 10 min) and washed three times with 1x PBS (10 mM Na<sub>2</sub>HPO<sub>4</sub>, 2.7 mM KCl, 137 mM NaCl, P4417 (Sigma)) changing the tube after each wash to eliminate unspecific protein binding. Low binding plastic was used on all sample preparation steps. Each experiment was performed in triplicate with particle-free control.

### Protein corona isolation and digestion

Particles with protein corona were placed in 150  $\mu$ L of 8M urea in 25 mM ammonium bicarbonate buffer (ABC), sonicated for 5 minutes and kept for 10 minutes at room temperature (repeated twice). Proteins were reduced by dithiothreitol (final concentration 10 mM, 1 hour, 37°C) and alkylated by iodoacetamide (final concentration 20 mM, 30 min, room temperature, in dark). The solution was diluted with 115  $\mu$ L of 25 mM ABC (4M final urea concentration) and digested with Lys-C (1:50, 3 hours, 37°C). Later 900  $\mu$ L of 25mM ABC (1M final urea concentration) was added to the solution and it was digested with trypsin (1:50, overnight, 37°C). Nanoparticles were removed by centrifugation (15000g, 10 min, 25°C). The sample was concentrated in SpeedVac to the volume of ~300 $\mu$ L and purified by C18 StageTips (Thermo Fisher Scientific). Purified peptides were dried completely in SpeedVac and stored at –20°C until LC-MS analysis.

## LC-MS analysis

Samples (~ 1 µg on the column) were analyzed by Q-Exactive HF mass spectrometer (Thermo Scientific, Bremen, Germany) coupled with UltiMate 3000 nanoflow LC system (Thermo Scientific, Germering, Germany). Trap column (µ-Precolumn C18 PepMap100, Thermo Scientific, 5µm, 300µm i.d.5 mm, 100Å) and analytical column (EASY-Spray PepMap RSLC C18, Thermo Scientific, 2 µm, 75µm i.d. 500 mm, 100Å) heated to 50°C were employed for separations. Mobile phases were as follows: (A) 0.1% FA in water; (B) 95% ACN, 0.1% FA in water. Samples were pre-concentrated for 10 min on the trap column at 2%B. Then, peptides were eluted using the following gradient: from 2%B to 20%B in 52.5 min, from 20%B to 32%B in 7.5 minutes at 270 nL·min<sup>-1</sup> flow rate. The column was washed at 95%B for 10 minutes and equilibrated to the start concentration of mobile phase B.

Mass spectrometry measurements were performed using data-dependent acquisition (DDA) mode (Top 12). Electrospray voltage was set to 2.0 kV. Electrospray capillary temperature was 275°C. MS1 settings were as follows: mass range from 300 to 1400 Th, resolving power of 120,000 at m/z 200, maximum injection time

was set to 100 ms, the automatic gain control (AGC) for MS1 was 3.0e6. Precursor ions were isolated with the m/z window of 1.4 Th followed by their fragmentation using higher-energy collision dissociation (HCD) using normalized collision energy (NCE) of 27, the dynamic exclusion was set to 20 s. Fragment ions were measured in the Orbitrap mass-analyzer with resolving power of 15,000 at m/z 200. Maximum injection time during MS/MS was 100 ms with AGC value of 1.0e5.

#### Search database

Plasma proteome database [1] was downloaded in XML format from the official website – http://www.plasmaproteomedatabase.org/ (access date: 09.12.2016). Uniprot accession number, information about the experimental evidence, and reported plasma concentration were parsed from the XML files. Only database entries having more than one experimental evidence and at least one indicating that the protein was detected in plasma with valid Uniprot accession number were preserved. The most recent version of protein sequences was obtained from Uniprot via programming interface using accession numbers. If the plasma proteome database entry had several accession numbers assigned, each of them was added individually. Duplicate protein sequences were discarded. The number of proteins in the database after refinement was 3776. The sequences of common contaminants (226 proteins), as used in MaxQuant [2], were added to the database. Finally, the reversed decoy database was concatenated and saved in common FASTA format. All data manipulations were performed using Python (3.6.3) script.

#### Data analysis

Mass spectrometry data was converted to mzML format using msconvert from ProteoWizard (3.0.9248) [3] and searched with MSGF+ (2016.12.12) [4] against protein database described earlier. Carbamidomethylation of cysteine was used as fixed modification, variable modifications included methionine oxidation, acetylation of protein N-terminus, and carbamylation of peptide N-terminus and lysine. Parent mass tolerance was set to 10 ppm and instrument was set to Q-Exactive. Identifications of all samples in the same experiment (i.e., pH and temperature perturbation) were merged and validated by Percolator (3.01) [5], protein inference was performed by picked protein algorithm, protein FDR was restricted to 0.01. Feature detection, alignment between LC-MS runs and peptide quantification was performed by corresponding tools from OpenMS (2.1.0) [6]. Protein abundance was calculated as a median abundance of three most abundant peptides (Top3). Proteins having less than 3 quantified peptides were excluded. Protein abundancies for each replicate were corrected by subtracting abundancies of the same protein found in the corresponding particle-free control sample. Integration of all tools was programmed in Python (3.6.3).

## Differentially abundant proteins

The  $log_{10}$ -transformed abundancies of proteins detected in all tested conditions (*y*) and temperature or pH values (*x*) were scaled to [0, 1] interval. The relationship was modeled by the sigmoid curve

$$y = \frac{1}{1 + e^{-k(x - x_0)}}.$$

Parameters k and  $x_0$  were selected using non-linear least squares optimization (**curve\_fit** from **scipy** module). The fraction of explained variability was required to be higher than 0.5 for the successful fit.

$$1 - \frac{\Sigma(y'-y)^2}{\Sigma(y-\bar{y})^2} > 0.5$$
, where y' – predicted value and  $\bar{y}$  – is the average value

Reversed scaling transformation was applied for the optimized  $x_0$  to obtain critical condition; the sign of k indicated the direction of change.

#### Minimal spanning tree

The values for amino acid indices for 544 protein parameters presenting in the Kyoto database [7] (v. 9.1) were downloaded from the official website (http://www.genome.jp/aaindex/). Properties annotation as **composition, physicochemical property, beta propensity, other property, alpha and turn propensity**, and **hydrophobicity** were extracted from Tomii et al. [8]. Since the paper used an earlier version of Kyoto database only 402 properties got annotations, the others were annotated as **undefined**. Cytoscape (3.6.0) was used to perform network analysis. All pairwise distances between protein properties were calculated as 1 - |R|, where *R* is Pearson's correlation coefficient between amino acid indices and used to build minimal spanning tree by Kruskal's algorithm using cySpanningTree (1.1) plugin for Cytoscape. Interactive visualization of the complete spanning tree can be accessed at https://caetera.github.io/AgNPCorona

## Lessening analysis

Amino acid indices from Kyoto database were used to calculate the numerical value of each property (544 in total) for all proteins in the protein database (created earlier). The distributions of each individual property for persistent proteins i.e. quantified in all perturbation conditions (189 in temperature experiment, and 173 in pH experiment) and for all proteins in the database were compared. The dispersion of the distribution was calculated as the difference between 10<sup>th</sup> and 90<sup>th</sup> percentiles and used to calculate the change in dispersion (lessening).

Lessening = 
$$\frac{\frac{90}{Pers}C - \frac{10}{Pers}C}{\frac{90}{All}C - \frac{10}{All}C},$$

 $_{Pers}^{90}C$  and  $_{Pers}^{10}C - 90^{th}$  and  $10^{th}$  percentiles of property C for persistent proteins,  $_{All}^{90}C$  and  $_{All}^{10}C - 90^{th}$  and  $10^{th}$  percentiles of property C for all proteins

Significance was estimated by a permutation test. The test was performed in the following way. The distribution of the lessening under null-hypothesis was estimated by sampling (100000 times) a subset of proteins without repetition from the complete population. The size of this subset was the same as the size of the persistent group in the corresponding experiment (i.e. 189 or 173). The lessening was calculated using this subset as the persistent group. The resulting distribution was fitted by the normal one. The parameters were calculated using non-linear least squares optimization (**curve\_fit** from **scipy** module). The p-value was

calculated as cumulative distribution function (two-tailed) of the fitted normal distribution. Resulting p-values were corrected using Benjamini-Hochberg method.

Protein properties in **alpha and turn propensities** and **beta propensity** groups displaying significant change in the distribution for persistent fraction were manually assigned a coefficient (1, or -1) indicating, if the increase in numerical value indicates the increase in the corresponding property, for example, an increase of beta-sheet content in the protein (coefficient 1) or vice versa (coefficient -1). The coefficients for properties in hydrophobicity group were calculated as the sign of the difference between the numeric value for isoleucine (hydrophobic) and aspartic acid (hydrophilic). The coefficients were used to calculate the direction of change (expressed as the difference between median values) in the persistent protein fraction relative to the background. Alpha and turn propensities were split into two separate groups.

All used scripts are published on GitHub: https://github.com/caetera/AgNPCorona

#### **Supplementary Figures**



**Figure S1.** Correlation of critical pH and isoelectric point (A) and critical temperature with the melting temperature (B) for differentially abundant protein



**Figure S2.** Example of dispersion change (lessening) analysis. (A) The persistent proteins have wider spread, than background – lessening > 1; (C) distribution of numerical values of the corresponding protein property, additional second component can be observed; (B) the persistent proteins have narrower spread, than background – lessening < 1; (D) value distribution for persistent proteins is narrower and has one

component. The significance is estimated by permutation test and corrected according to Benjamini-Hochberg. The whiskers on boxplots show the 10<sup>th</sup> and 90<sup>th</sup> percentile of the distribution.



**Figure S3.** Minimum spanning trees for the pH perturbation experiment. Properties are divided into six main categories and individual properties are color coded according to the degree of lessening in spread between persistent proteins and proteins found in plasma. Only nodes corresponding to significant changes (FDR < 0.005) are colored.



**Figure S4.** The direction of change for protein properties displaying significant lessening or broadening of distribution in persistent protein fraction.

| Table S1. Number of proteins in each protein classes |  |
|------------------------------------------------------|--|
|------------------------------------------------------|--|

| Experiment  | Class I | Class II | Class III |
|-------------|---------|----------|-----------|
| Temperature | 123     | 32       | 34        |
| pН          | 96      | 59       | 18        |

## References

- 1. Nanjappa, V., et al., *Plasma Proteome Database as a resource for proteomics research: 2014 update.* Nucleic Acids Res, 2014. **42**(Database issue): p. D959-65.
- 2. Cox, J. and M. Mann, *MaxQuant enables high peptide identification rates, individualized p.p.b.range mass accuracies and proteome-wide protein quantification.* Nat Biotechnol, 2008. **26**(12): p. 1367-72.
- 3. Chambers, M.C., et al., *A cross-platform toolkit for mass spectrometry and proteomics*. Nat Biotechnol, 2012. **30**(10): p. 918-20.
- 4. Kim, S. and P.A. Pevzner, *MS-GF+ makes progress towards a universal database search tool for proteomics*. Nat Commun, 2014. **5**: p. 5277.
- 5. The, M., et al., *Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0.* J Am Soc Mass Spectrom, 2016. **27**(11): p. 1719-1727.
- 6. Rost, H.L., et al., *OpenMS: a flexible open-source software platform for mass spectrometry data analysis.* Nat Methods, 2016. **13**(9): p. 741-8.
- 7. Kawashima, S., et al., *AAindex: amino acid index database, progress report 2008.* Nucleic Acids Res, 2008. **36**(Database issue): p. D202-5.
- 8. Tomii, K. and M. Kanehisa, *Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins*. Protein Eng, 1996. **9**(1): p. 27-36.

Differentially abundant proteins in pH experiment





![](_page_12_Figure_0.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

Differentially abundant proteins in temperature experiment

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

Tubulin beta chain (TUBB) 42.0 7.07  $R^2 = 0.96$ 1.85 0.10 -4.0 17.0 30.0 41.0 47.0 Temperature Tropomyosin alpha-4 chain (TPM4) 42.9 6.75 - $R^2 = 0.93$ 2.01 0.45 -17.0 30.0 41.0 47.0 4.0 Temperature Serotransferrin (TF) 26.9 1.44  $R^2 = 0.50$ 0.81 -

0.21 -

4.0

17.0

30.0

Temperature

41.0 47.0

Results of lessening analysis

| AND/PSCU21     0.0851     1.005     7.444     0.1434     1.0069     2.08610     1.08160     1.08160     1.9810     apple C1 demost able [undemoter at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1          | Difference(pH) | Lessening(pH) | p-value(pH) | FDR(pH)   | Difference(Temp) | Lessening(Temp) | p-value(Temp) | FDR(Temp) | Class                       | Description                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|---------------|-------------|-----------|------------------|-----------------|---------------|-----------|-----------------------------|-------------------------------------------------------------------------------|
| ALGEBEROIS     0.0022     0.755     1.586-03     1.0785     1.0785-03     1.0285-03     1.0285-03     Hydrophenicity more relicial portant (agor et al., 1982)       ALGEBEROIS     0.0214     0.757     5.256-03     0.0214     0.7785     0.1285-03     0.0286-03     0.0216     Signal (agor et al., 1982)       ALGEBEROIS     0.0221     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0214     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0215     0.0216     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116     0.0116    0.0116    0.0116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANDN920101 | 0.0851         | 1.0059        | 7.749E-01   | 8.414E-01 | 0.1143           | 1.0669          | 2.608E-01     | 3.618E-01 | Physicochemical properties  | alpha-CH chemical shifts (Andersen et al., 1992)                              |
| AACCRR2012     -0.0234     0.957     7.526-01     2.525-01     -0.034     0.907     3.538-01     -0.9234     0.956-01     Hydropholicity     Signal sequence heiral jocential (rogs et al. 1982)       HEGTP2101     0.0084     1.358     1.767-06     1.957-00     0.2581-01     Hydropholicity     Conformational parameter of more heiral jocential dynamics of parameter of more heiral jocential dynamics of parameter of more heiral jocential dynamics of parameter of more heiral jocential function of parameter of more heiral jocential dynamics of parameter of more heiral jocential function of parameter of more heiral jocential function of parameter of more heiral jocential dynamics of parameter of more heiral jocential dynamics of parameter of more heiral jocential function of parameter of heiral heiral jocential function of parameter of more heiral jocential function of parameter in dynamics of parameter of more heiral jocential function of parameter in dynamics of parameter of more heiral jocential function of parameter of more heiral jocent more statemark heiral functin of parameter of more | ARGP820101 | 0.0029         | 0.7459        | 1.466E-03   | 6.760E-03 | 0.0118           | 0.7065          | 1.049E-04     | 1.098E-03 | Hydrophobicity              | Hydrophobicity index (Argos et al., 1982)                                     |
| ALCREE     1.0.70     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00     5.134-00 <th< td=""><th>ARGP820102</th><td>-0.0324</td><td>0.9570</td><td>7.526E-01</td><td>8.255E-01</td><td>-0.0634</td><td>0.9077</td><td>3.353E-01</td><td>4.354E-01</td><td>Hydrophobicity</td><td>Signal sequence helical potential (Argos et al., 1982)</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ARGP820102 | -0.0324        | 0.9570        | 7.526E-01   | 8.255E-01 | -0.0634          | 0.9077          | 3.353E-01     | 4.354E-01 | Hydrophobicity              | Signal sequence helical potential (Argos et al., 1982)                        |
| Inscrepcing     Course     1353     17.00-00     1.000-00     1.2759     6.810-00     8.810-00     8.810-00     Conformation parameter of lamer heile (Regine Jack, 1759)       BEG772010     0.0125     1.2071     3.976-02     0.0135     1.1374     1.1377-02     1.0576-02     Monandia parameter of best-tructure (Regine Jack, 1758)     Conformation parameter of best-tructure (Regine Jack, 1758)       BEG772010     0.0143     0.8483     2.7047-0     5.8267-0     0.0155     0.0250     3.316-0     0.7067-0     0.700     0.0016     9.9887-0     High paraditaria     High para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARGP820103 | -0.0281        | 1.0370        | 5.354E-01   | 6.318E-01 | -0.0724          | 0.9953          | 9.056E-01     | 9.261E-01 | Hydrophobicity              | Membrane-buried preference parameters (Argos et al., 1982)                    |
| E66779.002     0.0125     0.137     1.9476-02     0.025     1.074     0.0175     1.137     1.9176-02     0.025     0.025     0.025     0.027     0.015     0.137     0.135     0.137     1.7176     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0073     0.0074     0.0075     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074     0.0074 <th>BEGF750101</th> <td>0.0084</td> <td>1.3538</td> <td>1.750E-06</td> <td>1.190E-04</td> <td>-0.0710</td> <td>1.2759</td> <td>6.961E-05</td> <td>8.819E-04</td> <td>Alpha and turn propensities</td> <td>Conformational parameter of inner helix (Beghin-Dirkx, 1975)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BEGF750101 | 0.0084         | 1.3538        | 1.750E-06   | 1.190E-04 | -0.0710          | 1.2759          | 6.961E-05     | 8.819E-04 | Alpha and turn propensities | Conformational parameter of inner helix (Beghin-Dirkx, 1975)                  |
| Intersection     0.0125     1.272     1.944F a)     7.88E c)     0.0157     0.275     2.771 b)     2.0772     2.071 b)     2.0772 b)     2.071 b)     2.077 b)     2.071 b)     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BEGF750102 | 0.0230         | 0.8138        | 1.674E-02   | 3.976E-02 | -0.0039          | 0.8151          | 1.418E-02     | 3.655E-02 | Hydrophobicity              | Conformational parameter of beta-structure (Beghin-Dirkx, 1975)               |
| Intersection     0.0973     0.2407     1.852:6.0     7.0416.3     0.0717     0.779     2.721:6.3     1.0702     Prodopolative<br>Prodopolative     Average flexibility index (blackar-n-bonusmy, D88)       BIOK 980101     0.0438     0.0438     2.724-02     7.0416.0     7.0012     Prodopolative     Residue values (blackar-n-bonusmy, D88)     Residue values (blackar-n-bonusmy, D88)     Residue values (blackar-n-bonusmy, D88)     Residue values (blackar-n-bonusmy, D88)       BIOK 980101     0.0475     0.0475     0.5846     1.0925     1.4816     2.6847-04     4.040polobitive     Retention coefficient II TA (Browne et al., 1982)       BIOK 200101     0.0576     1.2826     0.0044     1.384     2.326-02     5.764-02     4.040polobitive     Transfee flexibility indices (blackar-n-bonusmy, D88)       BIOK 200101     0.0578     0.3884-01     0.0044     0.3846     6.377-02     1.276-01     4.27640polobitive     Transfee free energy to autrifice (blackar-n-bonusmy, D88)       BIOK 200101     0.0578     0.3884-01     0.0017     0.8846     6.377-02     1.276-01     4.276-01     Hydropholitive     Transfee free energy to autrifice (blackar-n-bonusmy, D88)     Persitien tit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BEGF750103 | 0.0125         | 1.2073        | 1.904E-03   | 7.788E-03 | 0.1185           | 1.1574          | 1.137E-02     | 3.072E-02 | Alpha and turn propensities | Conformational parameter of beta-turn (Beghin-Dirkx, 1975)                    |
| INCCODING     -0.0141     0.4183     2.710-02     5.82502     0.0155     0.313-02     7.024-02     Physicohemical properties     Residue values (laglew, 1967)       BIOV880101     0.0059     0.571     1.436-64     1.597-03     0.6526     9.988-64     Hydrophohity     Information value for accessibility, swerage fraction 355 (floue et al., 1988)       BIOCR30101     0.0162     1.257     6.484-60     1.0562     1.571-12     2.267-61     Hydrophohity     Retention coefficient in TA flowme et al., 1982)       BIOCR30101     0.0162     1.287     5.484-60     0.0223     0.957-62     1.278-61     Hydrophohity     Retention coefficient in TA flowme et al., 1982)       BIUH700102     0.0573     0.558     0.0237     0.979-61     8.526-61     2.774-61     Hydrophohity     Retention coefficient in TA flowme et al., 1982)       BIUH700102     0.058     0.584     0.746-01     0.486     0.777-62     1.7284-61     2.774-61     Hydrophohity     Alpha Ht Cheance and the flow divertes, 1794)       BIUH700102     0.0580     0.584     0.3754     0.0756     0.777     0.516     0.5126     1.2746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BHAR880101 | -0.0973        | 0.7407        | 1.852E-03   | 7.691E-03 | -0.0577          | 0.7579          | 2.721E-03     | 1.007E-02 | Hydrophobicity              | Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)                      |
| EDUSED11     0.0590     0.713     3.814-04     2.584-03     0.0576     0.700     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036-05     9.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIGC670101 | -0.0143        | 0.8438        | 2.710E-02   | 5.826E-02 | -0.0185          | 0.8550          | 3.313E-02     | 7.024E-02 | Physicochemical properties  | Residue volume (Bigelow, 1967)                                                |
| BOUSB0122     0.0472     0.4721     1.4826-01     0.5827     0.582     2.204-Cs     4985-04     Hydrophobicity     Hofmation value for accessibility, weregit fraction 238 (Biou et al., 1988)       BOCG20101     -0.052     1.1287     5.6885-02     10.0861     -0.1044     1.1488     2.507-02     2.576-02     Hydrophobicity     Retention coefficient in FIA (Browne et al., 1982)       BULHA00102     -0.0524     1.2887     5.8841-01     2.4846-01     -0.0147     0.8846     6.397-02     1.2786-01     Hydrophobicity     Retention coefficient in FIA (Browne et al., 1982)       BULHA00102     -0.0534     0.5848     0.8484-01     -0.0147     0.8846     1.397-01     1.381-01     0.0624     0.6823     0.381-01     0.0674     0.4826     7.311-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.211-02     1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BIOV880101 | 0.0590         | 0.7139        | 3.814E-04   | 2.594E-03 | 0.0576           | 0.7000          | 9.036E-05     | 9.988E-04 | Hydrophobicity              | Information value for accessibility; average fraction 35% (Biou et al., 1988) |
| INDCG20010     -0.012     1.1275     6.048+02     1.058+01     -0.0265     1.2275-01     Hydrophobicity     Retention coefficient in TA (Browne et al., 1982)       IBULF30101     -0.0255     0.8825     1.988+02     1.088+02     -0.0147     0.486     6.977-62     Hydrophobicity     Retention coefficient in TA (Browne et al., 1982)       IBULF30101     -0.0558     0.588+0     7.466-0     0.0273     0.2784     1.9790-01     8.2526-0     1.978-01     Hydrophobicity     Transfer fee energy to suffice [BulH-Breek, 1974)       IBULF30101     0.0586     0.8586     1.378-01     0.0264     0.4984     7.3156-02     4.981-04     Hydrophobicity     Spin-spin coupling constants 3Hialpha-Hi (Bund-Wuthrich, 1979)       IBULF30102     0.0388     0.5876     1.378-01     0.0577     0.5516     6.518-01     2.3066-02     6.536-00     Hydrophobicity     Free energy of sulficin in track, tax/med (Bund-Wuthrich, 1979)       IBULF30102     0.0382     0.5787     0.5516     6.518-01     2.3066-02     Apha and tum propensites     More analytic fee energy of sulficin in track, tax/med (Bund-Wuthrich, 1979)       IBULF30102     0.0387     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BIOV880102 | 0.0475         | 0.6721        | 1.430E-04   | 1.587E-03 | 0.0367           | 0.6526          | 2.204E-05     | 4.695E-04 | Hydrophobicity              | Information value for accessibility; average fraction 23% (Biou et al., 1988) |
| ENCCE20102     -0.057     1.1287     5.688-02     1.088-01     -0.0144     1.148     2.520-62     Hydrophokiny     Ratembox cells     Restance     1.982       BULH740012     -0.0255     0.883     1.983     0.9834     6.584-01     7.464-01     -0.0735     0.9714     7.990-61     1.278-60     Mpacrem partial specific volume (Bull-Presse, 1974)       BULM740012     -0.0534     0.884     1.584-01     2.548-01     1.484-01     0.0664     0.4755     0.538-10     Phydrochemical properties     Sphare Tartific Bull-Presse, 1974)       BUMA70010     0.0368     0.8364     1.771-01     1.878-0     0.0674     0.438-6     7.311-62     1.231-01     Alpha aftur properties     Sphare Tartific Bull-Presses et al., 1974)       BUMA70101     0.0388     0.878     9.431-0     0.0077     0.9512     6.538-0     0.491-0     Alpha aftur properties     Sphare Tartific Bull-Presses et al., 1974)       BUMA70101     0.0388     0.9775     4.112-0     0.0177     0.958     6.538-0     0.7576     0.412-0     0.1161     0.9077     2.438-0     2.4380-0     D.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BROC820101 | -0.0162        | 1.1275        | 6.048E-02   | 1.058E-01 | -0.0626          | 1.0925          | 1.451E-01     | 2.267E-01 | Hydrophobicity              | Retention coefficient in TFA (Browne et al., 1982)                            |
| ULU_740101<br>(JULY 40101)     0.025     0.8836-10     1.9836-10     0.0147     0.4846     6.977-62     1.2726-01     Myiophobicity<br>(JULY 40102)     Tandef free energy to surface (Bull-Frees, 1574)       UUM740101     0.0550     0.5546-10     1.0673     0.9714     1.3726-01     Apparent parial specific valuers (Bull-Breese, 1574)       UUM740102     0.0512     2.556-10     3.546-10     0.0673     0.8736     1.3726-01     Apparent parial specific valuers (Bull-Breese, 1574)       UUM740102     0.0581     0.8756     1.4776-01     0.777     0.5516     6.5156-01     7.2452-01     Heta propentits     Moralized frequency of alpha-MHI (Budl-Wuhlrich, 1579)       UUM740102     0.0382     0.3878     9.4316-01     9.6250-01     0.0777     0.9516     6.5156-01     7.2452-01     Heta propentits     Moralized frequency of alpha-MHI (Budl-Wuhlrich, 1579)       UUM740102     0.0138     0.7776     4.1161     0.0077     0.9516     6.5156-01     7.2452-01     Heta propentits     Moralized frequency of alpha-MHI (Budl-Wuhlrich, 1579)       ULM740102     0.0118     0.7776     4.1212-01     0.01673     0.9826     0.7786-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BROC820102 | -0.0576        | 1.1287        | 5.689E-02   | 1.008E-01 | -0.1004          | 1.1458          | 2.520E-02     | 5.760E-02 | Hydrophobicity              | Retention coefficient in HFBA (Browne et al., 1982)                           |
| Built/20102     0.0573     0.9580     6.584-01     7.446-01     0.0733     0.9714     7.9974-01     8.520-01     Physicohemical properties     Apparent partial specific volume (Builferees, 1974)       BUIW2790102     0.150     0.9836     1.757-01     1.878-01     0.0578     0.9836     1.777-01     1.878-01     0.9714     7.316-02     1.2574-01     Alpha AH Chemical shifts (Buidf-Wuthrich, 1979)       BUIW2790102     0.0508     0.8536     1.777-01     1.878-01     0.0777     0.5516     6.512-01     7.2574-01     Alpha AH Chemical shifts (Buidf-Wuthrich, 1979)       BUIW270101     0.0382     1.834-01     9.622-01     0.0777     0.5516     6.512-01     7.2545-01     Represents     Normaliced frequency of alpha heik (Burges et al., 1974)       PUM270102     0.0381     0.9187     4.116-01     0.0052     0.832     1.406-12     Alpha and turp properties     Periarbailty parameter (Charton, 1981)     Normaliced frequency of alpha heik (Burges et al., 1974)       PUM34820102     0.0218     0.9102     3.777-01     0.1161     0.9077     3.454-01     Absta ot unproperties     Periarbailty parameter (Charton, 1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BULH740101 | -0.0225        | 0.8825        | 1.983E-01   | 2.838E-01 | -0.0147          | 0.8486          | 6.977E-02     | 1.278E-01 | Hydrophobicity              | Transfer free energy to surface (Bull-Breese, 1974)                           |
| UBUR290101<br>DUMA290102     0.0548     0.8940     2.500-01     3.544-01     0.0623     0.8798     1.554-01     2.274-01     Alpha and turn propensites<br>alpha CH chemical shifts (dimul-Muthich, 1979)       UBUR290103     0.0550     0.8536     1.177-01     1.1878-01     0.0674     0.8426     7.311-02     3.212-01     Alpha CH chemical shifts (dimul-Muthich, 1979)       UBUR240010     0.0388     0.9878     9.811-01     9.622-01     0.0577     0.5516     6.511-01     7.245-61     Beta propensites<br>(Muthick, 1982)     Normaliced frequency of alpha hubit (Burges et al., 1974)       UBUR240010     0.0218     0.9187     4.116-01     5.011-61     0.9077     3.454-61     4.260-61     Other propensites<br>(Muthick, 1982)     Normaliced frequency of alpha hubit (Burges et al., 1974)       CHAMB30101     0.0218     0.776-01     3.936-01     0.6823     1.4946-61     2.806-10     Other propensites<br>(Muthick, 1982)     Normaliced frequency of alpha hubit (Burges et al., 1974)       CHAMB30102     0.7776-01     1.916-0     0.9077     3.454-61     4.458-61     Wytropholicity<br>(Muthick, 1982)     Normaliced frequency of alpha hubit (Muthick, 1982)     Normaliced frequency of alpha hubit (Muthi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BULH740102 | -0.0573        | 0.9580        | 6.584E-01   | 7.446E-01 | -0.0735          | 0.9714          | 7.990E-01     | 8.520E-01 | Physicochemical properties  | Apparent partial specific volume (Bull-Breese, 1974)                          |
| UBMA790102<br>UMA790102     0.156     0.9351     2.569F-01     5.648F-01     Phylicochemical properties<br>Spinspin coupling constants 3/hspins-NH (Bundi-Wuthrich, 1979)       UBMA740101     0.0598     0.8536     1.377F-01     1.878E-01     0.077     0.1915     S.538F-01     6.438F-01     Phylicochemical properties<br>Spinspin coupling constants 3/hspinsh-NH (Bundi-Wuthrich, 1979)       UBMA740102     0.0388     0.9878     9.431E-01     9.629F-01     0.077     0.9516     6.511E-01     2.245E-01     Bet propensites<br>Spinspin coupling constants 3/hspinsh-Withrig (Bundi-Wuthrich, 1979)       CHAMESD010     0.0013     0.9187     4.118E-01     1.0101     0.5628     2.456E-02     Phylicochemical properties<br>Steric parameter (Charton-Charton, 1982)       CHAMESD010     0.0123     1.7774     4.712E-01     0.1611     0.9077     3.54E-01     3.704E-01     3.704E-01     Alpha and tum propensites     The Chau-Fasman parameter (Charton-Charton, 1982)       CHAMESD020     0.0170     1.339E-01     0.0664     1.0713     2.704E-01     3.704E-01     Alpha and tum propensites     The Chau-Fasman parameter (Tharton-Charton, 1983)       CHAMESD020     0.05751     1.588E-01     0.0700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BUNA790101 | 0.0548         | 0.8940        | 2.560E-01   | 3.544E-01 | 0.0623           | 0.8798          | 1.554E-01     | 2.374E-01 | Alpha and turn propensities | alpha-NH chemical shifts (Bundi-Wuthrich, 1979)                               |
| ULW_299103     0.0598     0.838     1.177E-01     1.878E-01     0.0674     0.8425     7.311E-02     1.231E-01     Apha and tum propensities     Normalized frequency of alpha helix (Burgess et al., 1274)       BURA70002     0.0392     1.3445     1.827E-05     4.496E-04     0.0077     0.516     6.516E-01     2.248E-01     Beta propensity     Normalized frequency of alpha helix (Burgess et al., 1274)       CHAM820102     0.0138     0.9177     4.712E-01     0.0185     0.8888     2.677E-02     2.604E-02     Physicochemical propensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BUNA790102 | 0 1160         | 0.9051        | 2 659F-01   | 3 634F-01 | 0 1096           | 1 0315          | 5 539F-01     | 6 439F-01 | Physicochemical properties  | alpha-CH chemical shifts (Bundi-Wuthrich, 1979)                               |
| JULYA 20102     0.0392     1.13     1.827-05     4.496-04     -0.0777     1.1398     2.966-02     Alpha and turp propensitie     Hormalized frequency of setunded structure (burges et al., 1974)       BURA 20102     0.0838     0.9878     9.431E-01     0.00757     0.9516     7.245E-01     Beta propensitie     Normalized frequency of setunded structure (burges et al., 1974)       GHAMB20101     0.0218     0.7876     0.0124     0.8533     2.673E-02     6.044E-02     Physicochemical propensite     Steric parameter (Charton - Charton, 1982)       GHAMB20101     0.0203     1.104     1.230F-01     0.0604     1.0713     2.704E-01     3.704E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BUNA790103 | 0.0508         | 0.8536        | 1.177E-01   | 1.878E-01 | 0.0674           | 0.8426          | 7.311E-02     | 1.321E-01 | Alpha and turn propensities | Spin-spin coupling constants 3JHalpha-NH (Bundi-Wuthrich, 1979)               |
| BURA 40002     0.0888     0.9878     9.431E-01     9.629E-01     0.0757     0.9516     6.513E-01     7.245E-01     Beta propensity     Normalized frequency of extended structure (Burges et al., 1974)       CHAM820102     0.0013     0.9187     4.116E-01     5.001E-01     2.000E-01     Other properties     Steric parameter (Charton, 1982)       CHAM820102     0.1543     0.9102     3.777E-01     4.712E-01     0.1161     0.0077     3.745E-01     4.458E-01     Hydrophobicity     Free energy of solution in water, kal/mole (Charton, Charton, 1982)       CHAM830102     0.1170     1.0303     4.542E-01     5.78E-01     0.3656     0.9939     8.832E-01     9.083E-01     Alpha and turn propensites       CHAM830104     -0.0139     0.4482     5.70E-01     6.598E-01     -0.0720     0.9885     7.756E-02     Physicochemical properties     The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)       CHAM830106     -0.0173     0.8415     5.646E-02     1.004E-01     0.0000     0.8337     3.581E-02     Physicochemical properties     The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)       CHAM830106 <th>BURA740101</th> <td>-0.0392</td> <td>1.3145</td> <td>1.827E-05</td> <td>4.496E-04</td> <td>-0.0717</td> <td>1.1398</td> <td>2.966E-02</td> <td>6.560E-02</td> <td>Alpha and turn propensities</td> <td>Normalized frequency of alpha-helix (Burgess et al., 1974)</td>                                                                                                                                                                                                                                                                                                                                                                  | BURA740101 | -0.0392        | 1.3145        | 1.827E-05   | 4.496E-04 | -0.0717          | 1.1398          | 2.966E-02     | 6.560E-02 | Alpha and turn propensities | Normalized frequency of alpha-helix (Burgess et al., 1974)                    |
| CHAMB1010     -0.0013     0.9187     4.116E-01     5.101E-01     -0.0502     0.8823     1.940E-01     2.800E-01     Other properties     Steric parameter (Charton, Charton, 1982)       CHAM820101     0.0218     0.7955     6.014E-04     3.533E-03     0.0185     0.8583     2.673E-02     6.034E-02     Physicochemical properties     Fee energy of solution in water, Kal/mole (Charton-Charton, 1982)       CHAM820101     0.0203     1.1104     1.230E-01     1.0356     0.9999     8.832E-01     9.036E-01     Physicochemical properties       CHAM830103     0.0505     0.7753     1.989E-02     4.005E-02     0.0210     0.8935     7.75E-01     3.746E-01     Physicochemical properties       CHAM830105     -0.0141     0.7812     3.486E-03     1.163E-02     -0.0082     0.8337     4.594E-02     9.087E-02     Physicochemical properties     The number of atoms in the side chain labelel 3+1 (Charton-Charton, 1983)       CHAM830106     -0.0173     0.8486     0.397E-01     8.332E-01     0.0000     8.337     3.633E-02     7.556E-02     Physicochemical properties     The number of atoms in the side chain labelel 3+1 (Charton-Charton, 1983)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BURA740102 | 0.0838         | 0.9878        | 9 431F-01   | 9 629F-01 | 0.0757           | 0.9516          | 6 513E-01     | 7 245F-01 | Beta propensity             | Normalized frequency of extended structure (Burgess et al., 1974)             |
| CHAM820101     0.0218     0.785     6.014E-04     3.533E-03     0.0185     0.8583     2.673E-02     6.034E-02     Physicochemical properties     Polarizability parameter (Charton Charton, 1982)       CHAM820102     0.1543     0.9102     3.777E-01     4.712E-01     0.1161     0.9097     3.454E-01     4.458E-01     Alpha and turn propensites     The Chou-Fasma parameter (Charton Charton, 1982)       CHAM830102     0.1170     1.0303     4.552E-01     0.1365     0.9939     8.332E-01     9.085E-01     Alpha and turn propensites     Apparameter defined from the residues obtained from the best correlation of       CHAM830104     -0.0319     0.4452     5.701E-01     5.605E-02     0.0002     0.8537     4.594E-02     Physicochemical propensite     The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983)       CHAM830106     -0.0173     0.8416     5.64E-02     1.0046-01     0.0086     1.0019     7.955E-02     Physicochemical propensity     The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983)       CHAM830108     0.0889     0.9726     7.804E-01     8.435E-01     0.00886     1.0019     7.956E-01     Physicochemica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAM810101 | -0.0013        | 0.9187        | 4 116F-01   | 5 101F-01 | -0.0502          | 0.8823          | 1 940F-01     | 2 800F-01 | Other properties            | Steric narameter (Charton 1981)                                               |
| CHAMB2012     0.1543     0.9102     3.777E-01     4.712E-01     0.1161     0.9077     3.454E-01     Hydrophobicity     Free energy of solution in water, kal/mole (Charton-Charton, 1982)       CHAMB30101     0.0203     1.1104     1.230E-01     1.939E-01     0.0664     1.071     2.704E-01     3.704E-01     Alpha and turn propensities     Ap arameter of the from the residual oblight of the residual obl             | CHAM820101 | 0.0218         | 0.7695        | 6.014F-04   | 3 533E-03 | 0.0302           | 0.8583          | 2 673E-02     | 6.034F-02 | Physicochemical properties  | Polarizability parameter (Charton-Charton 1982)                               |
| CHAM830101     0.0203     1.1104     1.230E-01     1.939E-01     0.0604     1.0713     2.704E-01     3.704E-01     Alpha and turn propensities       CHAM830102     0.1170     1.0303     4.542E-01     5.578E-01     0.1365     0.9393     8.832E-01     9.083E-01     Alpha and turn propensities     A parameter defined from the residuals obtained from the beta charnel and the coll conformation (Charton-Charton, 1983)       CHAM830104     -0.019     0.9482     5.701E-01     6.598E-01     -0.0720     0.9685     7.544E-01     8.192E-01     Other properties     The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983)       CHAM830106     -0.0173     0.8416     5.646E-02     1.004E-01     0.0000     0.8337     4.553E-02     Physicochemical properties     The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)       CHAM830107     0.0873     1.0240     5.979E-01     0.8286     1.0397     9.247E-01     9.368E-01     Charameter of charge transfer donc capability (Charton-Charton, 1983)       CHAM830106     -0.0178     0.8483     3.862E-02     -0.0144     0.8686     5.814E-02     1.098E-01     Physicochemical properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAM820102 | 0 1543         | 0.9102        | 3 777F-01   | 4 712F-01 | 0 1161           | 0 9077          | 3 454F-01     | 4 458E-01 | Hydrophobicity              | Free energy of solution in water kcal/mole (Charton-Charton 1982)             |
| CHAM830120     0.1126     1.236     2.578E-01     0.1365     0.9939     8.832E-01     9.983E-01     Alpha and tum propensities     A parameter of function from the best correlation of       CHAM830104     -0.0505     0.7753     1.989E-02     4.605E-02     0.0210     0.9393     2.776E-01     3.740E-01     Physicochemical properties     The number of atoms in the side chain labelled 1+1 (Charton-Charton, 1983)       CHAM830105     -0.0174     0.841E     5.498E-01     0.0857     7.544E-01     8.192E-00     Other properties     The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)       CHAM830106     0.0889     0.9726     7.804E-01     8.832E-01     0.0133     0.6357     7.995E-01     9.988E-01     Composition     A parameter of charge transfer conor capability (Charton-Charton, 1983)       CHAM830107     0.0889     0.9726     7.804E-01     8.498E-01     0.9978     9.247E-01     9.368E-01     Composition     A parameter of charge transfer conor capability (Charton-Charton, 1983)       CHAOC760101     -0.0178     0.8444     7.888E-03     2.121E-02     -0.0154     0.8665     5.814E-02     1.998E-01     Physicochemical proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAM830101 | -0.0203        | 1 1104        | 1 230F-01   | 1 939F-01 | 0.0604           | 1 0713          | 2 704F-01     | 3 704E-01 | Alpha and turn propensities | The Chou-Fasman narameter of the coil conformation (Charton-Charton 1983)     |
| CHAM830103     0.0505     0.7733     1.989E-02     4.605E-02     0.0210     0.8936     2.776E-01     3.740E-01     Physicochemical properties     The number of atoms in the side chain labelled 1+1 (Charton-Charton, 1983]       CHAM830104     -0.0319     0.9482     5.701E-01     6.598E-01     -0.0720     0.9685     7.544E-01     8.192E-01     Other properties     The number of atoms in the side chain labelled 1+1 (Charton-Charton, 1983]       CHAM830105     -0.0173     0.8416     5.646E-02     1.0040-01     0.0000     0.8337     3.633E-02     7.555E-02     Physicochemical properties     The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)       CHAM830106     0.00873     1.0240     5.979E-01     0.0886     1.0919     7.995E-01     8.520E-01     Beta propensity     A parameter of charge transfer donor capability (Charton-Charton, 1983)       CHAM830107     -0.0154     0.8483     3.862E-02     7.0159     0.8387     9.730E-02     1.0595-01     Physicochemical properties     Residue accessible surfaca rea in folded protein (Chothia, 1976)       CHAM830108     -0.0440     0.7238     2.182E-03     8.608E-03     0.0104     8.638E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHAM830102 | 0 1170         | 1 0303        | 4 542F-01   | 5 578F-01 | 0 1365           | 0.9939          | 8 832F-01     | 9 083E-01 | Alpha and turn propensities | A parameter defined from the residuals obtained from the best correlation of  |
| CHAM830104     -0.0319     0.9482     5.701E-01     6.598E-01     -0.0720     0.9685     7.54E-01     8.192E-01     Other properties     The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983)       CHAM830106     -0.0141     0.7812     3.486E-03     1.163F-02     -0.0082     0.8337     4.594E-02     9.087E-02     Physicochemical properties     The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983)       CHAM830106     -0.0173     0.8416     5.646E-02     1.004C0     0.8337     3.652E-02     Physicochemical properties     The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983)       CHAM830106     -0.0173     0.8443     3.862E-01     0.0886     1.0019     7.995E-01     8.520E-01     Beta propensity     A parameter of charge transfer capability (Charton-Charton, 1983)       CHOC750101     -0.0178     0.8044     7.883E-03     2.121E-02     -0.0144     0.8663     5.814E-02     1.098E-01     Physicochemical properties     Residue accessible surface area in tripeptide (Chothia, 1976)       CHOC750101     -0.0440     7.283     2.182E-03     2.086C-03     0.0262     Ydrophobicity     Proportion of resid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHAM830103 | 0.0505         | 0 7753        | 1 989F-02   | 4 605F-02 | 0.0210           | 0.8936          | 2 776F-01     | 3 740F-01 | Physicochemical properties  | The number of atoms in the side chain labelled 1+1 (Charton-Charton, 1983)    |
| CHAN830105     -0.0141     0.7812     3.486E-03     1.163E-02     -0.0082     0.8837     4.594E-02     9.087E-02     Physicochemical properties     The number of bonds in the side chain labelled 3+1 (Charton-Charton, 1983)       CHAM830106     -0.0173     0.8416     5.646E-02     1.004E-01     0.0000     0.8337     3.653E-02     Physicochemical properties     The number of bonds in the side chain labelled 3+1 (Charton-Charton, 1983)       CHAM830108     0.0873     1.0240     5.979E-01     8.832E-01     0.0113     0.9978     9.247E-01     9.368E-01     Composition     A parameter of charge transfer capability (Charton-Charton, 1983)       CHAM830108     0.0889     0.9726     7.804E-01     8.438E-02     0.0159     0.8837     9.730E-02     1.698E-01     Physicochemical properties     Residue accessible surface area in tripedide (Chotha, 1976)       CHOC760101     -0.0178     0.8444     7.883E-02     0.0281     0.8633     8.648E-02     1.098E-01     Physicochemical properties     Residue accessible surface area in tripedide (Chotha, 1976)       CHOC760103     0.0657     0.7908     7.553E-03     0.0813     9.709E-03     2.716E-02     Hydrophobic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAM830104 | -0.0319        | 0.9482        | 5 701F-01   | 6 598F-01 | -0.0720          | 0.9685          | 7 544F-01     | 8 192F-01 | Other properties            | The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983)    |
| CHAM83016     -0.0173     0.8416     5.646E-02     1.004E-01     0.0000     0.8337     3.653E-02     7.556E-02     Physicochemical properties     The number of bonds in the longest chain (Charton-Charton, 1983)       CHAM830107     0.0873     1.0240     5.979E-01     6.892E-01     0.0886     1.0019     7.995E-01     8.520E-01     Beta propensity     A parameter of charge transfer capadity (Charton-Charton, 1983)       CHAM830108     0.0889     0.9726     7.804E-01     8.458E-01     0.01130     0.9978     9.247E-01     9.368E-01     Composition     A parameter of charge transfer capadity (Charton-Charton, 1983)       CHOC750101     -0.0178     0.8448     3.862E-02     7.613E-02     -0.0159     0.8837     5.747E-04     Physicochemical properties     Residue accessible surface are are in folded protein (Chothia, 1976)       CHOC750101     -0.0040     0.7328     2.182E-03     8.081E-02     0.0300     0.8103     9.799E-03     2.716E-02     Hydrophobicity     Proportion of residues 95% buried (Chothia, 1976)       CHOC750104     -0.0548     0.8468     4.448E-02     8.831E-02     0.0300     0.8103     9.799E-03     1.716E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHAM830105 | -0.0141        | 0.7812        | 3.486E-03   | 1.163E-02 | -0.0082          | 0.8537          | 4.594E-02     | 9.087E-02 | Physicochemical properties  | The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)    |
| CHAM830107     0.0873     1.0240     5.979E-01     6.892E-01     0.0886     1.0019     7.995E-01     8.520E-01     Beta propensity     A parameter of charge transfer capability (Charton-Charton, 1983)       CHAM830108     0.0889     0.9726     7.804E-01     8.435E-01     0.1130     0.9978     9.247E-01     9.368E-01     Composition     A parameter of charge transfer capability (Charton-Charton, 1983)       CHOC750101     -0.0178     0.8044     7.883E-03     2.121E-02     -0.0144     0.8663     5.814E-02     1.098E-01     Physicochemical properties     Average volume of buried carces in tripptide (Chothia, 1976)       CHOC760102     -0.0440     0.7238     2.182E-03     8.603E-03     -0.0109     0.7036     5.747E-04     3.361E-03     Hydrophobicity     Proportion of residue s25% buried (Chothia, 1976)       CHOC760103     0.0657     0.7908     7.53EE-02     0.0300     0.8103     9.709E-02     Hydrophobicity     Proportion of residue s25% buried (Chothia, 1976)       CHOC750101     -0.0440     1.3663     3.461E-06     1.83E-04     -0.144     1.2092     3.236E-02     Hydrophobicity     Proportion of residue s25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHAM830106 | -0.0173        | 0.8416        | 5.646E-02   | 1.004E-01 | 0.0000           | 0.8337          | 3.653E-02     | 7.556E-02 | Physicochemical properties  | The number of bonds in the longest chain (Charton-Charton, 1983)              |
| CHAM830108     0.0889     0.9726     7.804E-01     8.435E-01     0.1130     0.9978     9.247E-01     9.368E-01     Composition     A parameter of charge transfer donor capability (Charton-Charton, 1983)       CHOC750101     -0.0154     0.8483     3.862E-02     7.613E-02     -0.0159     0.8837     9.730E-02     1.659E-01     Physicochemical properties     Average volume of buriface area in tripeptide (Chothia, 1975)       CHOC760101     -0.0140     0.7238     2.121E-02     -0.0144     0.8663     5.814E-02     1.098E-01     Physicochemical properties     Residue accessible surface area in tripeptide (Chothia, 1976)       CHOC760102     -0.0440     0.7238     2.182E-03     8.603E-03     -0.0129     2.716E-02     Hydrophobicity     Proportion of residues 95% buried (Chothia, 1976)       CHOC760104     -0.0640     1.3663     3.461E-01     0.0766     1.0267     5.131E-01     6.094E-01     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780201     -0.0640     1.3663     3.461E-01     1.706E-03     0.0486     0.7281     7.709E-05     9.116E-04     Beta propensities     Normalized frequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAM830107 | 0.0873         | 1.0240        | 5.979E-01   | 6.892E-01 | 0.0886           | 1.0019          | 7.995E-01     | 8.520E-01 | Beta propensity             | A parameter of charge transfer capability (Charton-Charton, 1983)             |
| CHOC750101     -0.0154     0.8483     3.862E-02     7.613E-02     -0.0159     0.8837     9.730E-02     1.659E-01     Physicochemical properties     Average volume of buried residue (Chothia, 1975)       CHOC760101     -0.0178     0.8044     7.883E-03     2.121E-02     -0.0144     0.8663     5.814E-02     1.098E-01     Physicochemical properties     Residue accessible surface area in tripeptide (Chothia, 1976)       CHOC760102     -0.0440     0.7238     2.182E-03     8.603E-03     -0.019     0.7036     5.747E-04     3.361E-03     Hydrophobicity     Residue accessible surface area in folded protein (Chothia, 1976)       CHOC760103     0.0657     0.7908     7.553E-03     2.086E-02     0.0201     0.8053     8.648E-03     2.716E-02     Hydrophobicity     Proportion of residues 100% buried (Chothia, 1976)       CHOP780101     -0.040     1.0471     3.630E-01     4.571E-01     0.0766     1.0267     5.131E-01     6.094E-01     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978a)       CHOP780202     0.0568     0.7281     1.709E-05     9.16E-04     Beta propensitis     Normalized frequency of beta-turn (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAM830108 | 0.0889         | 0.9726        | 7.804E-01   | 8.435E-01 | 0.1130           | 0.9978          | 9.247E-01     | 9.368E-01 | Composition                 | A parameter of charge transfer donor capability (Charton-Charton, 1983)       |
| CHOC760101     -0.0178     0.8044     7.883E-03     2.121E-02     -0.0144     0.8663     5.814E-02     1.098E-01     Physicochemical properties     Residue accessible surface area in tripeptide (Chothia, 1976)       CHOC760102     -0.0440     0.7238     2.182E-03     8.603E-03     -0.0109     0.7036     5.747E-04     3.361E-03     Hydrophobicity     Residue accessible surface area in tripeptide (Chothia, 1976)       CHOC760103     0.0657     0.7908     7.533E-03     2.086E-02     0.0281     0.8053     8.648E-03     2.501E-02     Hydrophobicity     Proportion of residues 95% buried (Chothia, 1976)       CHOC760104     0.0548     0.8468     4.448E-02     8.581E-02     0.0300     0.8103     9.709E-03     2.71E-02     Hydrophobicity     Proportion of residues 95% buried (Chothia, 1976)       CHOP780201     -0.0040     1.0471     3.630E-04     4.571E-01     0.0766     1.0267     5.131E-01     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780202     0.0558     0.7281     1.736E-04     1.0392     7.09E-05     9.116E-04     Beta propensities     Normalized frequency of bet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHOC750101 | -0.0154        | 0.8483        | 3.862E-02   | 7.613E-02 | -0.0159          | 0.8837          | 9.730E-02     | 1.659E-01 | Physicochemical properties  | Average volume of buried residue (Chothia, 1975)                              |
| CHOC760102     -0.0440     0.7238     2.182E-03     8.603E-03     -0.0109     0.7036     5.747E-04     3.361E-03     Hydrophobicity     Residue accessible surface area in folded protein (Chothia, 1976)       CHOC760103     0.0657     0.7908     7.553E-03     2.086E-02     0.0281     0.8053     8.648E-03     2.502E-02     Hydrophobicity     Proportion of residues 95% buried (Chothia, 1976)       CHOC760104     0.0548     0.8468     4.448E-02     8.581E-02     0.0300     0.8103     9.709E-03     2.716E-02     Hydrophobicity     Proportion of residues 100% buried (Chothia, 1976)       CHOP780101     -0.0040     1.0471     3.630E-01     4.571E-01     0.0766     1.0267     5.131E-01     6.094E-01     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978a)       CHOP780201     -0.0640     1.3663     3.461E-04     1.6067-03     0.0486     0.7281     7.709E-05     9.116E-04     Beta propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780203     -0.0316     0.9666     8.458E-01     0.0393     1.0132     7.091E-01     7.779E-01     Alpha and turn prope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHOC760101 | -0.0178        | 0.8044        | 7.883E-03   | 2.121E-02 | -0.0144          | 0.8663          | 5.814E-02     | 1.098E-01 | Physicochemical properties  | Residue accessible surface area in tripeptide (Chothia, 1976)                 |
| CHOC760103     0.0657     0.7908     7.553E-03     2.086E-02     0.0281     0.8053     8.648E-03     2.502E-02     Hydrophobicity     Proportion of residues 95% buried (Chothia, 1976)       CHOC760104     0.0548     0.8468     4.448E-02     8.581E-02     0.0300     0.8103     9.709E-03     2.716E-02     Hydrophobicity     Proportion of residues 95% buried (Chothia, 1976)       CHOP780101     -0.0040     1.0471     3.630E-01     4.571E-01     0.0766     1.0267     5.131E-01     6.094E-01     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978a)       CHOP780201     -0.0640     1.3663     3.461E-06     1.883E-04     -0.1146     1.2092     3.83E-03     1.321E-02     Alpha and turn propensities     Normalized frequency of alpha-helix (Chou-Fasman, 1978b)       CHOP780202     0.0568     0.7281     1.736E-04     0.0486     0.7281     7.709E-05     9.116E-04     Beta propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780203     -0.0316     0.9666     8.458E-01     0.0393     1.0132     7.09E-05     9.16E-04     Hydrophobicity     Normalized frequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHOC760102 | -0.0440        | 0.7238        | 2.182E-03   | 8.603E-03 | -0.0109          | 0.7036          | 5.747E-04     | 3.361E-03 | Hydrophobicity              | Residue accessible surface area in folded protein (Chothia, 1976)             |
| CHOC760104     0.0548     0.448E-02     8.581E-02     0.0300     0.8103     9.709E-03     2.716E-02     Hydrophobicity     Proportion of residues 100% buried (Chothia, 1976)       CHOC760104     0.0548     0.448E-02     8.581E-02     0.0300     0.8103     9.709E-03     2.716E-02     Hydrophobicity     Proportion of residues 100% buried (Chothia, 1976)       CHOP780201     -0.0640     1.3663     3.461E-06     1.883E-04     -0.1146     1.2092     3.836E-03     1.321E-02     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780202     0.0568     0.7281     1.736E-04     1.760E-03     0.0486     0.7281     7.709E-05     9.116E-04     Beta propensity     Normalized frequency of beta-sheet (Chou-Fasman, 1978b)       CHOP780203     -0.0316     0.9666     8.458E-01     8.935E-01     0.0393     1.0132     7.09E-02     7.024E-02     Hydrophobicity     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780204     0.0080     0.8882     1.980E-01     2.838E-01     -0.0574     0.9251     4.676E-01     5.628E-01     Alpha and turn propensities     Normalize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHOC760103 | 0.0657         | 0.7908        | 7.553E-03   | 2.086E-02 | 0.0281           | 0.8053          | 8.648E-03     | 2.502E-02 | Hydrophobicity              | Proportion of residues 95% buried (Chothia, 1976)                             |
| CHOP780101     -0.0040     1.0471     3.630E-01     4.571E-01     0.076     1.0267     5.131E-01     6.094E-01     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978a)       CHOP780201     -0.0640     1.3663     3.461E-06     1.883E-04     -0.1146     1.2092     3.836E-03     1.321E-02     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780202     0.0568     0.7281     1.736E-04     1.760E-03     0.0486     0.7281     7.709E-05     9.116E-04     Beta propensity     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780203     -0.0316     0.9666     8.458E-01     8.935E-01     0.0393     1.0132     7.093E-01     7.779E-01     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780204     0.0080     0.8882     1.980E-01     2.838E-01     -0.00784     0.9251     4.676E-01     5.628E-01     Alpha and turn propensities     Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)       CHOP780206     0.0656     0.9334     5.038E-01     0.0580     1.0613     2.812E-01     3.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHOC760104 | 0.0548         | 0.8468        | 4.448E-02   | 8.581E-02 | 0.0300           | 0.8103          | 9.709E-03     | 2.716E-02 | Hydrophobicity              | Proportion of residues 100% buried (Chothia, 1976)                            |
| CHOP780201     -0.0640     1.3663     3.461E-06     1.883E-04     -0.1146     1.2092     3.836E-03     1.321E-02     Alpha and turn propensities     Normalized frequency of alpha-helix (Chou-Fasman, 1978b)       CHOP780202     0.0568     0.7281     1.736E-04     1.760E-03     0.0486     0.7281     7.709E-05     9.116E-04     Beta propensities     Normalized frequency of alpha-helix (Chou-Fasman, 1978b)       CHOP780203     -0.0316     0.9666     8.458E-01     8.935E-01     0.0393     1.0132     7.093E-01     7.779E-01     Alpha and turn propensities     Normalized frequency of beta-sheet (Chou-Fasman, 1978b)       CHOP780204     0.0080     0.8882     1.980E-01     2.838E-01     -0.0098     0.8194     3.295E-02     7.024E-02     Hydrophobicity     Normalized frequency of N-terminal helix (Chou-Fasman, 1978b)       CHOP780205     -0.0590     0.9694     8.753E-01     9.037E-01     -0.0574     0.9251     4.676E-01     5.628E-01     Alpha and turn propensities     Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)       CHOP780206     0.0656     0.9334     5.038E-01     0.0641     0.9979     8.365E-01     8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHOP780101 | -0.0040        | 1.0471        | 3.630E-01   | 4.571E-01 | 0.0766           | 1.0267          | 5.131E-01     | 6.094E-01 | Alpha and turn propensities | Normalized frequency of beta-turn (Chou-Fasman, 1978a)                        |
| CHOP780202   0.0568   0.7281   1.736E-04   1.760E-03   0.0486   0.7281   7.709E-05   9.116E-04   Beta propensity   Normalized frequency of beta-sheet (Chou-Fasman, 1978b)     CHOP780203   -0.0316   0.9666   8.458E-01   8.935E-01   0.0393   1.0132   7.093E-01   7.779E-01   Alpha and turn propensities   Normalized frequency of beta-sheet (Chou-Fasman, 1978b)     CHOP780204   0.0080   0.8882   1.980E-01   2.838E-01   -0.0098   0.8194   3.295E-02   7.024E-02   Hydrophobicity   Normalized frequency of N-terminal helix (Chou-Fasman, 1978b)     CHOP780205   -0.0590   0.9694   8.753E-01   9.037E-01   -0.0574   0.9251   4.676E-01   5.628E-01   Alpha and turn propensities   Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)     CHOP780206   0.0656   0.9334   5.038E-01   0.0641   0.9979   8.365E-01   8.751E-01   Other propensities   Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)     CHOP780207   -0.0250   1.0821   2.039E-01   0.0580   1.0613   2.812E-01   3.758E-01   Alpha and turn propensities   Normalized frequency of N-terminal helical region (Chou-Fasman, 1978b) <th>CHOP780201</th> <td>-0.0640</td> <td>1.3663</td> <td>3.461E-06</td> <td>1.883E-04</td> <td>-0.1146</td> <td>1.2092</td> <td>3.836E-03</td> <td>1.321E-02</td> <td>Alpha and turn propensities</td> <td>Normalized frequency of alpha-helix (Chou-Fasman, 1978b)</td>                                                                                                                                                                                                                                                                                                                                                                                                             | CHOP780201 | -0.0640        | 1.3663        | 3.461E-06   | 1.883E-04 | -0.1146          | 1.2092          | 3.836E-03     | 1.321E-02 | Alpha and turn propensities | Normalized frequency of alpha-helix (Chou-Fasman, 1978b)                      |
| CHOP780203     -0.0316     0.9666     8.458E-01     8.935E-01     0.0393     1.0132     7.093E-01     7.779E-01     Alpha and turn propensities     Normalized frequency of beta-turn (Chou-Fasman, 1978b)       CHOP780204     0.0080     0.8882     1.980E-01     2.838E-01     -0.0098     0.8194     3.295E-02     7.024E-02     Hydrophobicity     Normalized frequency of N-terminal helix (Chou-Fasman, 1978b)       CHOP780205     -0.0590     0.9694     8.753E-01     9.037E-01     -0.0574     0.9251     4.676E-01     5.628E-01     Alpha and turn propensities     Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)       CHOP780206     0.0656     0.9334     5.038E-01     0.0641     0.9979     8.365E-01     8.751E-01     Other propensities     Normalized frequency of N-terminal helix (Chou-Fasman, 1978b)       CHOP780207     -0.0250     1.0821     2.039E-01     0.0580     1.0613     2.812E-01     3.758E-01     Alpha and turn propensities     Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b)       CHOP780208     -0.0135     0.7785     7.948E-03     2.121E-02     -0.0187     0.7804     4.922E-03     1.573E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHOP780202 | 0.0568         | 0.7281        | 1.736E-04   | 1.760E-03 | 0.0486           | 0.7281          | 7.709E-05     | 9.116E-04 | Beta propensity             | Normalized frequency of beta-sheet (Chou-Fasman, 1978b)                       |
| CHOP780204     0.0080     0.8882     1.980E-01     2.838E-01     -0.0098     0.8194     3.295E-02     7.024E-02     Hydrophobicity     Normalized frequency of N-terminal helix (Chou-Fasman, 1978b)       CHOP780205     -0.0590     0.9694     8.753E-01     9.037E-01     -0.0574     0.9251     4.676E-01     5.628E-01     Alpha and turn propensities     Normalized frequency of N-terminal helix (Chou-Fasman, 1978b)       CHOP780206     0.0656     0.9334     5.038E-01     6.034E-01     0.0641     0.9979     8.365E-01     8.751E-01     Other propenties     Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b)       CHOP780207     -0.0250     1.0821     2.039E-01     0.0580     1.0613     2.812E-01     3.758E-01     Alpha and turn propensities     Normalized frequency of C-terminal non helical region (Chou-Fasman, 1978b)       CHOP780208     -0.0135     0.7785     7.948E-03     2.121E-02     -0.0187     0.7896     7.400E-04     3.798E-03     Beta propensity     Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)     Chou-Fasman, 1978b)       CHOP780209     0.0819     0.7365     7.285E-04     4.003E-03     0.7890<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHOP780203 | -0.0316        | 0.9666        | 8.458E-01   | 8.935E-01 | 0.0393           | 1.0132          | 7.093E-01     | 7.779E-01 | Alpha and turn propensities | Normalized frequency of beta-turn (Chou-Fasman, 1978b)                        |
| CHOP780205     -0.0590     0.9694     8.753E-01     -0.0574     0.9251     4.676E-01     5.628E-01     Alpha and turn propensities     Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)       CHOP780206     0.0656     0.9334     5.038E-01     6.034E-01     0.0641     0.9979     8.365E-01     8.751E-01     Other propensities     Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)       CHOP780207     -0.0250     1.0821     2.039E-01     0.0580     1.0613     2.812E-01     3.758E-01     Alpha and turn propensities     Normalized frequency of C-terminal non helical region (Chou-Fasman, 1978b)       CHOP780208     -0.0135     0.7785     7.948E-03     2.121E-02     -0.0187     0.7804     4.922E-03     1.573E-02     Beta propensity     Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b)       CHOP780209     0.0819     0.7365     7.285E-04     4.003E-03     0.7896     7.400E-04     3.798E-03     Beta propensity     Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHOP780204 | 0.0080         | 0.8882        | 1.980E-01   | 2.838E-01 | -0.0098          | 0.8194          | 3.295E-02     | 7.024E-02 | Hydrophobicity              | Normalized frequency of N-terminal helix (Chou-Fasman, 1978b)                 |
| CHOP780206     0.0656     0.9334     5.038E-01     6.034E-01     0.0641     0.9979     8.365E-01     8.751E-01     Other properties     Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b)       CHOP780207     -0.0250     1.0821     2.039E-01     2.038E-01     0.0653     2.812E-01     3.758E-01     Alpha and turn propensities     Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b)       CHOP780208     -0.0135     0.7785     7.948E-03     2.121E-02     -0.0187     0.7804     4.922E-03     1.573E-02     Beta propensity     Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b)       CHOP780209     0.0819     0.7365     7.285E-04     4.003E-03     0.0899     0.7496     7.400E-04     3.798E-03     Beta propensity     Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHOP780205 | -0.0590        | 0.9694        | 8.753E-01   | 9.037E-01 | -0.0574          | 0.9251          | 4.676E-01     | 5.628E-01 | Alpha and turn propensities | Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)                 |
| CHOP780207     -0.0250     1.0821     2.039E-01     2.903E-01     0.0630     2.812E-01     3.758E-01     Alpha and turn propensities     Normalized frequency of C-terminal non helical region (Chou-Fasman, 1978b)       CHOP780208     -0.0135     0.7785     7.948E-03     2.121E-02     -0.0187     0.7804     4.922E-03     1.573E-02     Beta propensity     Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b)       CHOP780209     0.0819     0.7365     7.285E-04     4.003E-03     0.0899     0.7496     7.400E-04     3.798E-03     Beta propensity     Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHOP780206 | 0.0656         | 0.9334        | 5.038E-01   | 6.034E-01 | 0.0641           | 0.9979          | 8.365E-01     | 8.751E-01 | Other properties            | Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b)    |
| CHOP780208     0.0135     0.7785     7.98E-03     2.121E-02     -0.0187     0.7894     4.922E-03     1.573E-02     Beta propensity     Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b)       CHOP780209     0.0819     0.7365     7.285E-04     4.003E-03     0.0899     0.7496     7.400E-04     3.798E-03     Beta propensity     Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHOP780207 | -0.0250        | 1 0821        | 2 039F-01   | 2 903E-01 | 0.0580           | 1 0613          | 2 812F-01     | 3 758F-01 | Alpha and turn propensities | Normalized frequency of C-terminal non helical region (Chou-Fasman, 1978b)    |
| CHOP780209 0.0819 0.7365 7.285E-04 4.003E-03 0.0899 0.7496 7.400E-04 3.798E-03 Beta propensity Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHOP780208 | -0.0135        | 0.7785        | 7.948E-03   | 2.121E-02 | -0.0187          | 0.7804          | 4.922E-03     | 1.573E-02 | Beta propensity             | Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHOP780209 | 0.0819         | 0.7365        | 7.285E-04   | 4.003E-03 | 0.0899           | 0.7496          | 7.400E-04     | 3.798E-03 | Beta propensity             | Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)            |
| CHOP780210 -0.0434 1.1381 2.621E-02 5.681E-02 0.0593 1.0655 2.161E-01 3.022E-01 Alpha and turn propensities Normalized frequency of N-terminal non beta region (Chou-Fasman 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHOP780210 | -0.0434        | 1.1381        | 2.621F-07   | 5.681F-02 | 0.0593           | 1.0655          | 2.161F-01     | 3.022F-01 | Alpha and turn propensities | Normalized frequency of N-terminal non beta region (Chou-Fasman, 1978b)       |
| CHOP780211 -0.0354 0.9443 5.058E-01 -0.0049 0.9341 3.906E-01 4.019E-01 Alpha and turn propensities Normalized frequency of Cterminal non-beta region (Chou-Fasman, 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHOP780211 | -0.0354        | 0.9443        | 5.058E-01   | 6.034E-01 | -0.0049          | 0.9341          | 3.906E-01     | 4.919E-01 | Alpha and turn propensities | Normalized frequency of C-terminal non beta region (Chou-Fasman, 1978b)       |
| CHOP780212 0.1135 1.1781 4.609E-03 1.449E-02 0.1548 1.1305 2.009E-02 4.772E-02 Alpha and turn propensities Frequency of the 1st residue in turn (Chou-Fasman 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHOP780212 | 0.1135         | 1.1781        | 4.609E-03   | 1.449E-02 | 0.1548           | 1.1305          | 2.009E-02     | 4.772E-02 | Alpha and turn propensities | Frequency of the 1st residue in turn (Chou-Fasman, 1978b)                     |
| CHOP780213 -0.0772 0.8147 6.883E-02 1.178E-01 -0.0558 0.7975 3.465E-02 7.306E-02 Alpha and turn propensities Frequency of the 2nd residue in turn (Chou-Fasman 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHOP780213 | -0.0772        | 0.8147        | 6.883E-02   | 1.178E-01 | -0.0558          | 0.7975          | 3.465E-02     | 7.306E-02 | Alpha and turn propensities | Frequency of the 2nd residue in turn (Chou-Fasman, 1978b)                     |
| CHOP780214 0.0983 1.0913 1.463E-01 2.242E-01 0.1443 1.1475 2.079E-02 4.892E-02 Other properties Frequency of the 3rd residue in turn (Chou-Fasman, 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHOP780214 | 0.0983         | 1.0913        | 1.463E-01   | 2.242E-01 | 0.1443           | 1.1475          | 2.079E-02     | 4.892E-02 | Other properties            | Frequency of the 3rd residue in turn (Chou-Fasman, 1978b)                     |
| CHOP780215 0.0665 1.2936 1.529E-04 1.664E-03 0.1453 1.2624 3.102E-04 2.150E-03 Alpha and turn propensities Frequency of the 4th residue in turn (Chou-Fasman, 1978b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHOP780215 | 0.0665         | 1.2936        | 1.529E-04   | 1.664E-03 | 0.1453           | 1.2624          | 3.102E-04     | 2.150E-03 | Alpha and turn propensities | Frequency of the 4th residue in turn (Chou-Fasman, 1978b)                     |

| CHOP780216 | -0.0298 | 0.9665 | 7.684E-01 | 8.377E-01 | 0.0335  | 0.9396 | 4.906E-01 | 5.866E-01 | Alpha and turn propensities | Normalized frequency of the 2nd and 3rd residues in turn (Chou-Fasman, 1978b)                                                                      |
|------------|---------|--------|-----------|-----------|---------|--------|-----------|-----------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| CIDH920101 | 0.0709  | 0.7624 | 5.339E-03 | 1.614E-02 | 0.0518  | 0.7472 | 1.803E-03 | 7.212E-03 | Hydrophobicity              | Normalized hydrophobicity scales for alpha-proteins (Cid et al., 1992)                                                                             |
| CIDH920102 | 0.0463  | 0.6879 | 1.981E-04 | 1.858E-03 | 0.0463  | 0.6588 | 2.216E-05 | 4.695E-04 | Hydrophobicity              | Normalized hydrophobicity scales for beta-proteins (Cid et al., 1992)                                                                              |
| CIDH920103 | -0.0022 | 0.6936 | 2.700E-05 | 5.650E-04 | -0.0029 | 0.6446 | 3.716E-07 | 2.527E-05 | Hydrophobicity              | Normalized hydrophobicity scales for alpha+beta-proteins (Cid et al., 1992)                                                                        |
| CIDH920104 | 0.0489  | 0.6553 | 5.708E-06 | 2.588E-04 | 0.0597  | 0.5946 | 2.286E-08 | 4.146E-06 | Hydrophobicity              | Normalized hydrophobicity scales for alpha/beta-proteins (Cid et al., 1992)                                                                        |
| CIDH920105 | 0.0155  | 0.6813 | 2.366E-05 | 5.149E-04 | 0.0400  | 0.6345 | 3.626E-07 | 2.527E-05 | Hydrophobicity              | Normalized average hydrophobicity scales (Cid et al., 1992)                                                                                        |
| COHE430101 | -0.0794 | 1.0667 | 2.279E-01 | 3.187E-01 | -0.0865 | 1.0820 | 1.477E-01 | 2.289E-01 | Physicochemical properties  | Partial specific volume (Cohn-Edsall, 1943)                                                                                                        |
| CRAJ730101 | -0.0293 | 1.1973 | 8.649E-03 | 2.273E-02 | -0.1072 | 1.1233 | 7.522E-02 | 1.351E-01 | Alpha and turn propensities | Normalized frequency of middle helix (Crawford et al., 1973)                                                                                       |
| CRAJ730102 | 0.0146  | 0.7787 | 7.883E-03 | 2.121E-02 | 0.0102  | 0.8284 | 3.022E-02 | 6.656E-02 | Beta propensity             | Normalized frequency of beta-sheet (Crawford et al., 1973)                                                                                         |
| CRAJ730103 | 0.0404  | 1.2403 | 1.167E-04 | 1.476E-03 | 0.0927  | 1.2034 | 5.804E-04 | 3.361E-03 | Alpha and turn propensities | Normalized frequency of turn (Crawford et al., 1973)                                                                                               |
| DAWD720101 | -0.0272 | 0.7592 | 1.151E-03 | 5.695E-03 | -0.0394 | 0.8861 | 1.264E-01 | 2.044E-01 | Physicochemical properties  | Size (Dawson, 1972)                                                                                                                                |
| DAYM780101 | -0.0905 | 1.0317 | 5.598E-01 | 6.507E-01 | -0.0902 | 1.0957 | 1.385E-01 | 2.196E-01 | Composition                 | Amino acid composition (Dayhoff et al., 1978a)                                                                                                     |
| DAYM780201 | -0.0601 | 0.9443 | 5.463E-01 | 6.419E-01 | -0.1647 | 1.0308 | 5.048E-01 | 6.009E-01 | Physicochemical properties  | Relative mutability (Dayhoff et al., 1978b)                                                                                                        |
| DESM900101 | 0.0638  | 0.7219 | 8.457E-04 | 4.555E-03 | 0.0470  | 0.7243 | 5.494E-04 | 3.284E-03 | Hydrophobicity              | Membrane preference for cytochrome b: MPH89 (Degli Esposti et al., 1990)                                                                           |
| DESM900102 | 0.0463  | 0.7555 | 7.541E-03 | 2.086E-02 | 0.0330  | 0.7230 | 1.442E-03 | 6.227E-03 | Hydrophobicity              | Average membrane preference: AMP07 (Degli Esposti et al., 1990)                                                                                    |
| EISD840101 | 0.0634  | 0.7744 | 1.351E-02 | 3.296E-02 | 0.0157  | 0.7749 | 8.863E-03 | 2.551E-02 | Hydrophobicity              | Consensus normalized hydrophobicity scale (Eisenberg, 1984)                                                                                        |
| EISD860101 | 0.0585  | 0.8259 | 4.916E-02 | 9.230E-02 | 0.0057  | 0.7343 | 9.345E-04 | 4.459E-03 | Hydrophobicity              | Solvation free energy (Eisenberg-McLachlan, 1986)                                                                                                  |
| EISD860102 | -0.1361 | 0.7864 | 2.000E-02 | 4.611E-02 | -0.0838 | 0.8205 | 4.191E-02 | 8.443E-02 | Hydrophobicity              | Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986)                                                                                          |
| EISD860103 | 0.0482  | 0.8149 | 2.755E-02 | 5.877E-02 | 0.0376  | 0.7733 | 4.619E-03 | 1.496E-02 | Hydrophobicity              | Direction of hydrophobic moment (Eisenberg-McLachlan, 1986)                                                                                        |
| FASG760101 | 0.0276  | 0.7926 | 7.431E-03 | 2.073E-02 | 0.0276  | 0.8823 | 1.266E-01 | 2.044E-01 | Physicochemical properties  | Molecular weight (Fasman, 1976)                                                                                                                    |
| FASG760102 | 0.0641  | 1.0246 | 5.620E-01 | 6.519E-01 | 0.0169  | 1.0028 | 7.940E-01 | 8.502E-01 | Hydrophobicity              | Melting point (Fasman, 1976)                                                                                                                       |
| FASG760103 | 0.0039  | 0.9557 | 6.969E-01 | 7.769E-01 | 0.0039  | 0.9421 | 5.570E-01 | 6.460E-01 | Alpha and turn propensities | Optical rotation (Fasman, 1976)                                                                                                                    |
| FASG760104 | -0.0896 | 0.8885 | 2.944E-01 | 3.906E-01 | -0.0655 | 0.9690 | 9.023E-01 | 9.243E-01 | Alpha and turn propensities | pK-N (Fasman, 1976)                                                                                                                                |
| FASG760105 | 0.0138  | 1.0694 | 2.681E-01 | 3.655E-01 | -0.0607 | 1.0192 | 6.007E-01 | 6.802E-01 | Hydrophobicity              | pK-C (Fasman, 1976)                                                                                                                                |
| FAUJ830101 | 0.0557  | 0.7691 | 6.500E-03 | 1.871E-02 | 0.0299  | 0.6794 | 6.971E-05 | 8.819E-04 | Hydrophobicity              | Hydrophobic parameter pi (Fauchere-Pliska, 1983)                                                                                                   |
| FAUJ880101 | 0.0073  | 0.8437 | 6.839E-02 | 1.177E-01 | 0.0088  | 0.8073 | 1.697E-02 | 4.159E-02 | Physicochemical properties  | Graph shape index (Fauchere et al., 1988)                                                                                                          |
| FAUJ880102 | 0.0136  | 0.9024 | 2.986E-01 | 3.950E-01 | -0.0354 | 0.9214 | 3.880E-01 | 4.897E-01 | Other properties            | Smoothed upsilon steric parameter (Fauchere et al., 1988)                                                                                          |
| FAUJ880103 | 0.0185  | 0.7984 | 5.326E-03 | 1.614E-02 | 0.0185  | 0.8213 | 1.069E-02 | 2.951E-02 | Physicochemical properties  | Normalized van der Waals volume (Fauchere et al., 1988)                                                                                            |
| FAUJ880104 | -0.0688 | 0.8191 | 1.293E-02 | 3.211E-02 | -0.0464 | 0.8892 | 1.218E-01 | 1.978E-01 | Physicochemical properties  | STERIMOL length of the side chain (Fauchere et al., 1988)                                                                                          |
| FAUJ880105 | 0.0090  | 0.8205 | 5.742E-02 | 1.014E-01 | -0.0201 | 0.9000 | 3.006E-01 | 3.969E-01 | Physicochemical properties  | STERIMOL minimum width of the side chain (Fauchere et al., 1988)                                                                                   |
| FAUJ880106 | -0.0015 | 0.7802 | 8.716E-03 | 2.280E-02 | 0.0029  | 0.8769 | 1.401E-01 | 2.210E-01 | Other properties            | STERIMOL maximum width of the side chain (Fauchere et al., 1988)                                                                                   |
| FAUJ880107 | 0.0122  | 0.9889 | 9.723E-01 | 9.743E-01 | -0.0329 | 0.9528 | 6.468E-01 | 7.225E-01 | Other properties            | N.m.r. chemical shift of alpha-carbon (Fauchere et al., 1988)                                                                                      |
| FAUJ880108 | 0.0460  | 0.9607 | 7.264E-01 | 8.016E-01 | 0.0460  | 1.0239 | 6.014E-01 | 0.802E-01 | Hydrophobicity              | Localized electrical effect (Fauchere et al., 1988)                                                                                                |
| FAUJ880109 | -0.0771 | 0.7774 | 7.084E-03 | 1.997E-02 | -0.0469 | 0.7945 | 8.223E-03 | 2.392E-02 | Hydrophobicity              | Number of full perhaping arbitels (Fauchere et al., 1988)                                                                                          |
| FAUJ000110 | -0.0004 | 0.9320 | 1.5665.02 | 6.034E-01 | -0.0232 | 0.0455 | 2.2655.02 | 1.313E-01 | Hydrophobicity              | Desitive charge (Eauchere et al., 1988)                                                                                                            |
| FAUJ880111 | -0.1172 | 0.7370 | 1.300E-U3 | 0.920E-03 | -0.0338 | 0.8309 | 3.205E-02 | 0.992E-02 | Hydrophobicity              | Nogative charge (Fauchere et al., 1988)                                                                                                            |
| FA0J880112 | -0.0102 | 1.0564 | 3.308E-01 | 4.313E-01 | -0.0133 | 1.0266 | 6 100E-01 | 6.068E-01 | Alpha and turn propensities | Negative charge (Fauchere et al., 1966)                                                                                                            |
| FA03880113 | -0.0248 | 1.0047 | 4.130E-01 | 9.466E-01 | -0.0666 | 1.0200 | 5.441E-01 | 6 252E-01 | Alpha and turn propensities | Helix-coil equilibrium constant (Finkelstein-Dtitsvn, 1977)                                                                                        |
| FINA770101 | -0.0144 | 0.8820 | 1.525E-01 | 2 217E-01 | -0.0000 | 0.0426 | 3.441E-01 | 5 822E-01 | Hydrophobicity              | Helix initiation parameter at posicion i.1 (Einkelstein et al. 1991)                                                                               |
| FINA910101 | -0.0/81 | 0.8850 | 3 73/F-01 | 2.317E-01 | -0.0504 | 0.8393 | 7 801E-01 | 1 382E-01 | Alpha and turn propensities | Helix initiation parameter at posision i=1 (initeisten et al., 1991)<br>Helix initiation parameter at posision i i=1 i=2 (Einkelstein et al. 1991) |
| FINA910102 | -0 13/1 | 0.7279 | 1 371E-03 | 6 373E-03 | -0.0992 | 0.8012 | 1.620E-02 | 1.002E 01 | Hydrophobicity              | Helix termination parameter at posision i-2 i-1 i (Einkelstein et al. 1991)                                                                        |
| FINA910103 | -0.0350 | 0.7273 | 7 699F-03 | 2 115E-02 | 0.0332  | 0.8671 | 1.020E 02 | 1 838F-01 | Hydrophobicity              | Helix termination parameter at position j ±1, (Finkelstein et al., 1991)                                                                           |
| GARI730101 | 0.1686  | 0.7607 | 2 931E-03 | 1 029F-02 | 0.1035  | 0.8079 | 1.100E 01 | 3 209E-02 | Physicochemical properties  | Partition coefficient (Garel et al. 1973)                                                                                                          |
| GEIM800101 | -0.0782 | 1 1909 | 9 714F-03 | 2 493F-02 | -0 1003 | 1 1207 | 7.680E-02 | 1 365E-01 | Alpha and turn propensities | Alpha-helix indices (Geisow-Roberts, 1980)                                                                                                         |
| GEIM800102 | 0.0345  | 0 7826 | 1 799F-02 | 4 238F-02 | 0.0225  | 0.8839 | 1 896F-01 | 2 744F-01 | Alpha and turn propensities | Alpha-helix indices for alpha-proteins (Geisow-Roberts 1980)                                                                                       |
| GEIM800103 | 0.0460  | 1 0375 | 4 866F-01 | 5 907F-01 | -0.0003 | 0.9347 | 5 330E-01 | 6 235E-01 | Alpha and turn propensities | Alpha-helix indices for beta-proteins (Geisow-Roberts, 1980)                                                                                       |
| GEIM800104 | -0.0694 | 1.1039 | 1.149F-01 | 1.843F-01 | -0.1018 | 0.9710 | 8.124F-01 | 8.595F-01 | Alpha and turn propensities | Alpha-helix indices for alpha/beta-proteins (Geisow-Roberts, 1980)                                                                                 |
| GEIM800105 | 0.0997  | 0.9563 | 7.089F-01 | 7.870F-01 | 0.0982  | 0.8695 | 1.095F-01 | 1.821F-01 | Beta propensity             | Beta-strand indices (Geisow-Roberts, 1980)                                                                                                         |
| GEIM800106 | -0.0092 | 0.8456 | 4.498E-02 | 8.617E-02 | -0.0139 | 0.8310 | 2.086E-02 | 4.892E-02 | Beta propensity             | Beta-strand indices for beta-proteins (Geisow-Roberts, 1980)                                                                                       |
| GEIM800107 | 0.0427  | 0.7517 | 1.508E-03 | 6.838E-03 | 0.0449  | 0.7445 | 6.157E-04 | 3.472E-03 | Beta propensity             | Beta-strand indices for alpha/beta-proteins (Geisow-Roberts. 1980)                                                                                 |
| GEIM800108 | 0.0004  | 0.9222 | 4.494E-01 | 5.531E-01 | 0.0611  | 0.9171 | 3.873E-01 | 4.897E-01 | Alpha and turn propensities | Aperiodic indices (Geisow-Roberts, 1980)                                                                                                           |
| GEIM800109 | -0.0233 | 0.8087 | 3.475E-02 | 7.054E-02 | 0.0072  | 0.8509 | 8.753E-02 | 1.521E-01 | Alpha and turn propensities | Aperiodic indices for alpha-proteins (Geisow-Roberts. 1980)                                                                                        |
|            |         |        |           |           |         |        |           |           | ,                           | ,                                                                                                                                                  |

| GEIM800110       | -0.0161 | 0.7664 | 1.317E-02 | 3.228E-02              | 0.0164  | 0.7800 | 1.337E-02              | 3.463E-02 Beta                 | ta propensity             | Aperiodic indices for beta-proteins (Geisow-Roberts, 1980)                                      |
|------------------|---------|--------|-----------|------------------------|---------|--------|------------------------|--------------------------------|---------------------------|-------------------------------------------------------------------------------------------------|
| GEIM800111       | -0.0060 | 0.9486 | 6.485E-01 | 7.380E-01              | 0.0329  | 0.9235 | 4.029E-01              | 5.061E-01 Alpł                 | ha and turn propensities  | Aperiodic indices for alpha/beta-proteins (Geisow-Roberts, 1980)                                |
| GOLD730101       | -0.0124 | 0.7612 | 1.904E-03 | 7.788E-03              | -0.0122 | 0.7219 | 1.339E-04              | 1.271E-03 Hyd                  | drophobicity              | Hydrophobicity factor (Goldsack-Chalifoux, 1973)                                                |
| GOLD730102       | -0.0145 | 0.8393 | 3.251E-02 | 6.675E-02              | -0.0145 | 0.8631 | 5.971E-02              | 1.124E-01 Phy:                 | ysicochemical properties  | Residue volume (Goldsack-Chalifoux, 1973)                                                       |
| GRAR740101       | 0.0132  | 1.2048 | 5.401E-03 | 1.623E-02              | 0.0460  | 1.2080 | 3.067E-03              | 1.112E-02 Hyd                  | drophobicity              | Composition (Grantham, 1974)                                                                    |
| GRAR740102       | -0.0442 | 0.8623 | 1.167E-01 | 1.868E-01              | -0.0330 | 0.7837 | 8.920E-03              | 2.554E-02 Hyd                  | drophobicity              | Polarity (Grantham, 1974)                                                                       |
| GRAR740103       | -0.0058 | 0.8244 | 3.618E-02 | 7.235E-02              | -0.0127 | 0.8674 | 1.018E-01              | 1.725E-01 Phys                 | vsicochemical properties  | Volume (Grantham, 1974)                                                                         |
| GUYH850101       | -0.0824 | 0.6916 | 2.998E-04 | 2.260E-03              | -0.0797 | 0.6513 | 1.586E-05              | ,<br>3.751E-04 Hvd             | ,<br>drophobicity         | Partition energy (Guy. 1985)                                                                    |
| HOPA770101       | 0.0062  | 0.8827 | 1.762E-01 | 2.590E-01              | 0.0144  | 0.8617 | 8.989E-02              | ,<br>1.552E-01 Hvd             | drophobicity              | Hydration number (Hopfinger, 1971), Cited by Charton-Charton (1982)                             |
| HOPT810101       | -0.1104 | 0.8109 | 5.016E-02 | 9.345E-02              | -0.0488 | 0.7757 | 1.260E-02              | 3.313E-02 Hvd                  | drophobicity              | Hydrophilicity value (Hopp-Woods, 1981)                                                         |
| HUTJ700101       | 0.0941  | 0.7795 | 2.894E-03 | 1.022E-02              | 0.0669  | 0.7898 | 2.873E-03              | 1.056E-02 Com                  | mposition                 | Heat capacity (Hutchens, 1970)                                                                  |
| HUTJ700102       | -0.0234 | 0.7748 | 2.752E-03 | 9.913E-03              | -0.0019 | 0.8815 | 1.202E-01              | 1.958E-01 Phy                  | vsicochemical properties  | Absolute entropy (Hutchens, 1970)                                                               |
| HUTJ700103       | -0.0476 | 0.8391 | 4.781E-02 | 9.095E-02              | -0.0310 | 0.9067 | 2.656E-01              | 3.667E-01 Phy                  | vsicochemical properties  | Entropy of formation (Hutchens, 1970)                                                           |
| ISOY800101       | -0.0505 | 1 2602 | 1 024F-03 | 5 355E-03              | -0.0980 | 1 1170 | 1 035E-01              | 1 738F-01 Alph                 | bha and turn propensities | Normalized relative frequency of alpha-helix (Isogai et al. 1980)                               |
| ISOY800102       | 0.0900  | 1 0466 | 4 757F-01 | 5.815E-01              | 0.0863  | 0.9237 | 4 528F-01              | 5 487F-01 Beta                 | ta propensity             | Normalized relative frequency of extended structure (Isogai et al. 1980)                        |
| ISOY800103       | 0.0116  | 0.8771 | 1 808F-01 | 2 645E-01              | 0.0491  | 0.9818 | 9 316F-01              | 9 419F-01 Alph                 | ha and turn propensities  | Normalized relative frequency of bend (Isogai et al. 1980)                                      |
| ISOY800104       | -0.0841 | 0 8443 | 8 515E-02 | 1 430F-01              | -0.0608 | 0.8412 | 6.015E-02              | 1 128E-01 Alph                 | ha and turn propensities  | Normalized relative frequency of bend R (lsogai et al. 1980)                                    |
| ISOY800105       | 0.0586  | 0 9994 | 7 864F-01 | 8 452F-01              | 0 1588  | 1 1387 | 3 895E-02              | 7 966F-02 Oth                  | her properties            | Normalized relative frequency of bend S (Isogai et al., 1980)                                   |
| ISOY800106       | -0.0816 | 0.9081 | 2 924F-01 | 3 889F-01              | -0 1156 | 1.0315 | 4 406E-01              | 5 386F-01 Alph                 | ha and turn propensities  | Normalized relative frequency of belix end (Isogai et al., 1980)                                |
| ISOY800107       | -0.0176 | 0.9607 | 7 877F-01 | 8 452F-01              | -0.0145 | 0 9241 | 4 513E-01              | 5.487F-01 Hvd                  | dronhohicity              | Normalized relative frequency of double bend (Isogai et al., 1980)                              |
| ISOV800108       | 0.0606  | 1.0652 | 3 333E-01 | 4 282E-01              | 0.1311  | 1 2203 | 3 773E-03              | 1 307E-02 Oth                  | her properties            | Normalized relative frequency of coil (Isogai et al. 1980)                                      |
| IANI780101       | -0.0635 | 0.7533 | 2 120E-03 | 4.202E 01<br>8.420E-03 | -0.0432 | 0.7484 | 1.046E-03              | 4 853E-03 Hvd                  | dronhohicity              | Average accessible surface area (Janin et al. 1978)                                             |
| JANJ780102       | 0.0055  | 0.7389 | 4 889F-03 | 1 511F-02              | 0.0561  | 0.7222 | 1.040E 03              | 7 212E-03 Hvd                  | dronhohicity              | Percentage of buried residues (Janin et al., 1978)                                              |
| JANJ780102       | -0.0609 | 0.7607 | 2 845E-03 | 1.018E-02              | -0.0443 | 0.7381 | 6 537E-04              | 3 521E-03 Hvd                  | dronhohicity              | Percentage of exposed residues (Janin et al., 1978)                                             |
| JANJ700103       | 0.0005  | 0.7786 | 5 798F-03 | 1.010E 02              | 0.1138  | 0.7631 | 1 792F-03              | 7 212E-03 Hvd                  | drophobicity              | Ratio of buried and accessible molar fractions (Janin 1979)                                     |
| JANJ7 50101      | 0.1000  | 0.7760 | 2 093E-03 | 8 / 20E-03             | 0.0416  | 0.7138 | 7 379F-04              | 3 798E-03 Hvd                  | drophobicity              | Transfer free energy (Janin 1979)                                                               |
| JOND750102       | 0.0030  | 0.7455 | 1 501E-02 | 6.954E-03              | 0.0410  | 0.7078 | 1 2785-04              | 1.271E-02 Hvd                  | drophobicity              | Hydronhobicity (Jones 1975)                                                                     |
| JOND750102       | 0.0000  | 1 0872 | 2 195F-01 | 3.085E-01              | -0.0219 | 1 0988 | 1.576E 04              | 2 397E-01 Hvd                  | drophobicity              | nK (-COOH) (Jones 1975)                                                                         |
| IOND920101       | -0 1033 | 1 2556 | 2.155E 01 | 2 055E-03              | -0.0923 | 1 2442 | 2 746E-04              | 1.965E-03 Com                  | mosition                  | Relative frequency of occurrence (lones et al. 1992)                                            |
| IOND920102       | -0 1287 | 0.9535 | 6 529E-01 | 7.416E-01              | -0 1780 | 1.0717 | 2.740E 04              | 2 97/F-01 Phy                  | vsicochemical properties  | Relative mutability (lones et al. 1992)                                                         |
| UKT750101        | -0.0380 | 1 1645 | 1.667E-02 | 3 976F-02              | -0.0456 | 1 1973 | 2.121E 01<br>2.718E-03 | 1.007E-02 Com                  | mosition                  | Amino acid distribution (lukes et al. 1975)                                                     |
| UNI780101        | -0.0614 | 1 0118 | 6 939E-01 | 7 751E-01              | -0.0587 | 1.0967 | 1 170E-01              | 1.007E 02 Con                  | mposition                 | Sequence frequency (lungck 1978)                                                                |
| KANM800101       | -0.0634 | 1 2716 | 4.080E-04 | 2 674E-03              | -0.0827 | 1 1/11 | 5.067E-02              | 9 809F-02 Alph                 | ha and turn propensities  | Average relative probability of belix (Kanehisa-Tsong, 1980)                                    |
| KANM800101       | 0.0687  | 0 7377 | 6.607E-04 | 3 729F-03              | 0.0584  | 0 7261 | 1.655E-04              | 1 /12E-03 Bets                 | ta nronensity             | Average relative probability of heta-sheet (Kanehisa-Tsong, 1980)                               |
| KANM800102       | -0.0259 | 1 2205 | 1 680E-03 | 7 196E-03              | -0.0864 | 1 1378 | 3.979F-02              | 8 107E-02 Alph                 | the propensity            | Average relative probability of inner helix (Kanehisa-Tsong, 1980)                              |
| KANM800103       | 0.0235  | 0 7757 | 6.421E-02 | 1.862E-02              | 0.0654  | 0.7562 | 1 7885-02              | 7 212E-02 Ret:                 | ta propensity             | Average relative probability of inner heta-sheet (Kanehisa-Tsong, 1980)                         |
| KANN800104       | -0.0688 | 0.6577 | 1.2785-04 | 1.5032-02              | -0.0711 | 0.7302 | 1.7881-03              | 1 205E-02 Hvd                  | dronhobicity              | Elevibility parameter for no rigid neighbors (Karplus-Schulz, 1985)                             |
| KARP850101       | -0.0088 | 0.6526 | 1.2786-04 | 2 7525-04              | -0.0711 | 0.6968 | 6 5585-05              | 9.910E-04 Hvd                  | drophobicity              | Elevibility parameter for one rigid neighbors (Karplus-Schulz, 1985)                            |
| KARP850102       | 0.0434  | 0.0520 | 1.5251-05 | 3.753L-04              | 0.0404  | 0.0308 | 0.338L-03              | 6 762E 01 Com                  | mosition                  | Elevibility parameter for two rigid neighbors (Karplus-Schulz, 1985)                            |
| KARP850105       | 0.0170  | 0.8800 | 2.459E-01 | 2.407E-01              | -0.0862 | 0.9405 | 1 489E-01              | 2 201E-01 Hvd                  | drophobicity              | The Kerr-constant increments (Khanarian-Moore, 1990)                                            |
| KI ED8/0101      | -0.1051 | 0.9109 | 9.459L-01 | 4.397E-01              | -0.0802 | 0.8801 | 1.489L-01<br>8 022E-02 | 1.548E-01 Hvd                  | drophobicity              | Net charge (Klein et al. 1994)                                                                  |
| KELI 040101      | -0.0775 | 0.6953 | 1.216E-02 | 5 004E-02              | -0.0619 | 0.8350 | 5 7825-02              | 1.098E-01 Hvd                  | drophobicity              | Side chain interaction parameter (Krighaum-Rubin, 1971)                                         |
| KRIW790101       | -0.0830 | 0.6496 | 1.210E 05 | 1 150E-04              | -0.0746 | 0.6735 | 2 601E-06              | 1.050E 01 Hyd                  | drophobicity              | Side chain interaction parameter (Krigbaum-Komoriva, 1979)                                      |
| KRIW790101       | -0.0558 | 0.6522 | 2 810E-06 | 2 1085-04              | -0.0740 | 0.6958 | 2.001L-00<br>4.516E-05 | 7.020E-04 Hyd                  | drophobicity              | Fraction of site occupied by water (Krigbaum-Komoriya, 1979)                                    |
| KRIW790102       | -0.0053 | 0.7841 | 2 751E-02 | 0.012E-02              | -0.0081 | 0.0550 | 4.0685-02              | 8 257E-02 Phys                 | vsicochemical properties  | Side chain volume (Krighaum-Komoriya, 1979)                                                     |
| KKIW730103       | 0.0502  | 0.7841 | 5.514E-03 | 9.913L-03              | 0.0081  | 0.8033 | 4.008E-02              | 2 002E-02 Hvd                  | dronhohicity              | Hydronathy index (Kyte-Doolittle, 1982)                                                         |
| LAW/F8/0101      | -0.0302 | 0.0424 | 2.514E-02 | 3.033E-02              | -0.01/9 | 0.8866 | 1.100E-02              | 2.332L-02 Hyu<br>2.37/F_01 Hud | dronhobicity              | Transfer free energy CHD/water (Lawson et al. 1094)                                             |
| LAWE040101       | -0.0314 | 0.0923 | 1 9465 02 | J.044E-01              | -0.0405 | 0.0000 | 1.3306-01              |                                | drophobicity              | Hydrophobic parameter (Lewitt 1976)                                                             |
| LEVIVI760101     | -0.0935 | 0.7939 | 1.840E-UZ | 4.310E-02              | -0.0388 | 0.7555 | 2.300E-U3              | 9.093E-U3 HYU                  | urophobicity              | Dictance between C-alpha and centreid of side chain /Lowith 1076)                               |
| LEVIN760102      | -0.0146 | 1 01/2 | 0.439E-03 | 1.003E-02              | -0.0134 | 1 0288 | 4.424E-02              | 6 952E-01 Oth                  | her properties            | Side chain and theta(AAP) (Levitt 1076)                                                         |
| 15//4760104      | -0.0400 | 1.0145 | 7.747E-UI | 0.414E-UI              | -0.0050 | 1.0200 | 0.072E-01              | 2 0055E-01 OUN                 | her properties            | Side chain angie (Held(AAA) (Levill, 1370)<br>Side chain torcion angle nhi(AAAP) (Levilt, 1076) |
|                  | -0.0152 | 0.8217 | 3.031E-UZ | 1.233E-UZ              | 0.0102  | 0.6929 | 2.015E-01              | 0.200E 02 Dhu                  | veicechomical properties  | Badius of guration of side shain (Levitt, 1976)                                                 |
|                  | -0.0073 | 0.7907 | 3.U3/E-U3 | 1.334E-U2              | 0.0025  | 0.8540 | 4./41E-UZ              | 3.309E-02 Phy                  | vsicochemical properties  | nauius oi gyralion oi side chain (Levitt, 1976)<br>yan dar Waals paramatar PO (Lovitt, 1976)    |
| LE VIVI / BUILUB | -0.0117 | 0.8109 | 1.83/E-02 | 4.309E-02              | -0.01/6 | 0.8743 | 9.278E-02              | 1.592E-UI Phy                  | vsicochemical properties  | vali dei vvaais parameter RU (Levitt, 1976)                                                     |

| LEVM760107               | 0.0982  | 0.7592    | 5.723E-04 | 3.421E-03       | 0.0948  | 0.7641  | 3.655E-04              | 2.425E-03 | Physicochemical properties  | van der Waals parameter epsilon (Levitt, 1976)                                 |
|--------------------------|---------|-----------|-----------|-----------------|---------|---------|------------------------|-----------|-----------------------------|--------------------------------------------------------------------------------|
| LEVM780101               | -0.0713 | 1.1462    | 3.213E-02 | 6.626E-02       | -0.0858 | 1.0615  | 2.710E-01              | 3.704E-01 | Alpha and turn propensities | Normalized frequency of alpha-helix, with weights (Levitt, 1978)               |
| LEVM780102               | 0.0171  | 0.7835    | 4.178E-03 | 1.337E-02       | -0.0024 | 0.8511  | 4.322E-02              | 8.644E-02 | Beta propensity             | Normalized frequency of beta-sheet, with weights (Levitt, 1978)                |
| LEVM780103               | -0.0105 | 0.9643    | 8.083E-01 | 8.605E-01       | 0.0199  | 0.9299  | 4.873E-01              | 5.840E-01 | Alpha and turn propensities | Normalized frequency of reverse turn, with weights (Levitt, 1978)              |
| LEVM780104               | -0.0574 | 1.1838    | 8.247E-03 | 2.189E-02       | -0.0802 | 1.1502  | 2.311E-02              | 5.350E-02 | Alpha and turn propensities | Normalized frequency of alpha-helix, unweighted (Levitt, 1978)                 |
| LEVM780105               | 0.0914  | 0.7945    | 1.024E-02 | 2.592E-02       | 0.0407  | 0.7803  | 4.019E-03              | 1.361E-02 | Beta propensity             | Normalized frequency of beta-sheet, unweighted (Levitt, 1978)                  |
| LEVM780106               | -0.0164 | 0.8906    | 2.471E-01 | 3.438E-01       | 0.0309  | 0.8757  | 1.594E-01              | 2.414E-01 | Alpha and turn propensities | Normalized frequency of reverse turn, unweighted (Levitt, 1978)                |
| LEWP710101               | 0.0003  | 0.9575    | 6.766E-01 | 7.604E-01       | 0.0200  | 1.0369  | 5.158E-01              | 6.103E-01 | Alpha and turn propensities | Frequency of occurrence in beta-bends (Lewis et al., 1971)                     |
| LIFS790101               | 0.0320  | 0.6792    | 1.955E-04 | 1.858E-03       | 0.0066  | 0.7155  | 4.941E-04              | 3.154E-03 | Beta propensity             | Conformational preference for all beta-strands (Lifson-Sander, 1979)           |
| LIFS790102               | 0.0058  | 0.8016    | 7.954E-03 | 2.121E-02       | 0.0106  | 0.8468  | 3.079E-02              | 6.672E-02 | Beta propensity             | Conformational preference for parallel beta-strands (Lifson-Sander, 1979)      |
| LIFS790103               | 0.0817  | 0.7229    | 6.402E-03 | 1.863E-02       | 0.0273  | 0.7201  | 4.093E-03              | 1.366E-02 | Beta propensity             | Conformational preference for antiparallel beta-strands (Lifson-Sander, 1979)  |
| MANP780101               | 0.0506  | 0.6729    | 1.901E-05 | 4.496E-04       | 0.0506  | 0.6398  | 7.130E-07              | 4.310E-05 | Hydrophobicity              | Average surrounding hydrophobicity (Manavalan-Ponnuswamy, 1978)                |
| MAXF760101               | -0.0596 | 1.2350    | 1.843E-03 | 7.691E-03       | -0.0984 | 1.1102  | 1.066E-01              | 1.784E-01 | Alpha and turn propensities | Normalized frequency of alpha-helix (Maxfield-Scheraga, 1976)                  |
| MAXF760102               | 0.0757  | 1.0205    | 6.562E-01 | 7.437E-01       | 0.0514  | 0.8940  | 3.466E-01              | 4.458E-01 | Beta propensity             | Normalized frequency of extended structure (Maxfield-Scheraga, 1976)           |
| MAXF760103               | 0.0982  | 0.9923    | 9.579E-01 | 9.684E-01       | 0.0838  | 0.9707  | 7.762E-01              | 8.362E-01 | Other properties            | Normalized frequency of zeta R (Maxfield-Scheraga, 1976)                       |
| MAXF760104               | 0.0857  | 1.1240    | 9.045E-02 | 1.502E-01       | 0.1591  | 1.1536  | 3.044E-02              | 6.671E-02 | Other properties            | Normalized frequency of left-handed alpha-helix (Maxfield-Scheraga, 1976)      |
| MAXF760105               | 0.0721  | 0.8409    | 9.055E-02 | 1.502E-01       | 0.0919  | 0.9686  | 8.554E-01              | 8.921E-01 | Other properties            | Normalized frequency of zeta L (Maxfield-Scheraga, 1976)                       |
| MAXF760106               | -0.0640 | 0.8221    | 2 374F-02 | 5 272E-02       | -0 0749 | 0.8487  | 4 761F-02              | 9 309F-02 | Alpha and turn propensities | Normalized frequency of alpha region (Maxfield-Scheraga, 1976)                 |
| MCMT640101               | 0.0812  | 0.8491    | 7 949F-02 | 1 347E-01       | 0.0870  | 0.8832  | 1 807F-01              | 2 656E-01 | Physicochemical properties  | Refractivity (McMeekin et al. 1964) Cited by Jones (1975)                      |
| MFF1800101               | -0.0143 | 0.9863    | 9 508F-01 | 9 650E-01       | -0.0191 | 0.8602  | 1 493F-01              | 2 301E-01 | Hydrophobicity              | Retention coefficient in HPLC nH7 4 (Meek 1980)                                |
| MEE1800102               | 0.0396  | 0.8227    | 3 836F-02 | 7 588E-02       | 0.0127  | 0.7809  | 7 138F-03              | 2 182E-02 | Hydrophobicity              | Retention coefficient in HPLC, pH2 1 (Meek, 1980)                              |
| MEE1810101               | 0.0489  | 0 7449    | 1 490F-03 | 6.812E-03       | 0.0309  | 0.7159  | 2 321F-04              | 1 779F-03 | Hydrophobicity              | Retention coefficient in NaCIO4 (Meek-Rossetti, 1981)                          |
| MEEJ010101<br>MEEJ810102 | 0.0633  | 0.7418    | 2 405E-03 | 9 278F-03       | 0.0364  | 0.7264  | 5 437F-04              | 3 284F-03 | Hydrophobicity              | Retention coefficient in NaH2PO4 (Meek-Rossetti 1981)                          |
| MEIH800101               | -0.0301 | 0 7240    | 3 988F-04 | 2 674E-03       | -0.0258 | 0.6899  | 3 313E-05              | 6 007E-04 | Hydrophobicity              | Average reduced distance for C-alpha (Meirovitch et al. 1980)                  |
| MEIH800102               | -0.0556 | 0.7240    | 6.041E-04 | 3 533E-03       | -0.0289 | 0.0055  | 6 525E-04              | 3 521E-03 | Hydrophobicity              | Average reduced distance for side chain (Meirovitch et al. 1980)               |
| MEIH800103               | 0.0298  | 0.7568    | 3 409F-03 | 1 145E-02       | 0.0237  | 0.7547  | 2 219F-03              | 8 561F-03 | Hydrophobicity              | Average side chain orientation angle (Meirovitch et al. 1980)                  |
| MIX5850101               | 0.0524  | 0.7359    | 2 698F-03 | 9 913E-03       | 0.0373  | 0.6961  | 2.213E 03              | 1 932E-03 | Hydrophobicity              | Effective partition energy (Miyazawa-Jernigan, 1985)                           |
| NAGK730101               | -0.0471 | 1 1509    | 3.050E-03 | 6 381E-02       | -0.0861 | 1 0762  | 2.003E 04              | 2 916F-01 | Alpha and turn propensities | Normalized frequency of alpha-belix (Nagano, 1973)                             |
| NAGK730102               | 0.0461  | 0 7565    | 4 189F-04 | 2 713E-03       | 0.0369  | 0 7923  | 1 793F-03              | 7 212E-03 | Beta propensity             | Normalized frequency of bata-structure (Nagano, 1973)                          |
| NAGK730103               | -0.0192 | 1 1728    | 1 186E-02 | 2.919E 03       | 0.0379  | 1 1070  | 8 733E-02              | 1 521E-01 | Alpha and turn propensities | Normalized frequency of coil (Nagano, 1973)                                    |
| NAKH900101               | -0 1335 | 1 3094    | 2 218F-05 | 5.027E-04       | -0 1335 | 1 2781  | 6 470F-05              | 8 819F-04 | Composition                 | AA composition of total proteins (Nakashima et al. 1990)                       |
| NAKH900102               | -0 1949 | 0.8770    | 1 493F-01 | 2 275E-01       | -0 1751 | 0.9857  | 9 148F-01              | 9 302E-01 | Composition                 | SD of AA composition of total proteins (Nakashima et al., 1990)                |
| NAKH900103               | -0 1266 | 1 0730    | 3 242E-01 | 1 219E-01       | -0 1653 | 1.0617  | 3 869F-01              | 4 897F-01 | Composition                 | AA composition of mt-proteins (Nakashima et al. 1990)                          |
| NAKH900104               | 0.1200  | 0.9278    | 5.050E-01 | 6.034E-01       | -0.0249 | 0.8504  | 8 69/F-02              | 1.521E-01 | Hydrophobicity              | Normalized composition of mt-proteins (Nakashima et al., 1990)                 |
| NAKH900105               | -0 1168 | 1 0999    | 1 731E-01 | 2 566E-01       | -0.1640 | 0.9926  | 8 776F-01              | 9.073E-01 | Composition                 | AA composition of mt-proteins from animal (Nakashima et al., 1990)             |
| NAKH900106               | -0.0202 | 0.0777    | 9.257E-01 | 2.300E 01       | -0.0467 | 0.9520  | 1 277E-01              | 2.0565-01 | Hydrophobicity              | Normalized composition from animal (Nakashima et al. 1990)                     |
| NAKH900107               | -0.0233 | 1 0972    | 1 751E-01 | 2 5 8 2 E - 0 1 | -0.0407 | 1 1574  | 1.277E-01<br>2 104E-02 | 5 122E-02 | Composition                 | AA composition of mt-proteins from fungi and plant (Nakashima et al. 1990)     |
| NAKH900107               | 0.0734  | 0.8871    | 1.751E-01 | 1 931F-01       | 0.0927  | 0.8733  | 7 344E-02              | 1 323E-01 | Hydrophobicity              | Normalized composition from fungi and plant (Nakashima et al., 1990)           |
| NAKH900108               | -0.0460 | 1 2005    | 8.524E-06 | 2 1085-04       | -0.0767 | 1 20/19 | 1.344L-02              | 7 2405-05 | Composition                 | AA composition of membrane proteins (Nakashima et al. 1990)                    |
| NAKH900110               | 0.0400  | 0.8906    | 1.659E-01 | 2 480E-04       | -0.0707 | 0.8805  | 1.464E-00              | 2 271E-01 | Hydrophobicity              | Normalized composition of membrane proteins (Nakashima et al., 1990)           |
| NAKH900111               | -0.0304 | 1 0028    | 1.059E-01 | 1 0125-01       | -0.0139 | 1 1049  | 2 528E-02              | 1 /085-01 | Composition                 | Transmembrane regions of non-mt-proteins (Nakashima et al., 1990)              |
| NAKH900111               | -0.0290 | 1.0528    | 2 4225 01 | 1.9130-01       | 0.0330  | 1.1048  | 2 200E 01              | 1.4980-01 | Composition                 | Transmembrane regions of mt-proteins (Nakashima et al., 1990)                  |
| NAKH900112               | -0.0859 | 0.8422    | 3.422E-01 | 4.305E-01       | -0.1377 | 0.0220  | 3.200E-01              | 4.105E-01 | Hydrophobicity              | Patia of avorage and computed composition (Nakashima et al., 1990)             |
| NAKH920101               | -0.1855 | 1.0674    | 4.920E-02 | 3.230L-02       | -0.1277 | 1 0442  | 4.2220-01              | 5 170E-01 | Composition                 | AA composition of CVT of single-snapping proteins (Nakashima-Nishikawa, 1992)  |
| NAKH020101               | -0.1855 | 1.0074    | 6 200E 01 | 7 2105 01       | -0.1377 | 0.0640  | 4.103L-01              | 9 6625 01 | Composition                 | AA composition of CVT2 of single-spanning proteins (Nakashima-Nishikawa, 1992) |
| NAKH920102               | -0.1008 | 1.0175    | 0.309E-01 | 7.210E-01       | -0.1303 | 1.0057  | 0.249E-01              | 8.003E-01 | Composition                 | AA composition of EVT of single spanning proteins (Nakashima-Nishikawa,        |
| NAKH020103               | -0.1117 | 1 1/07    | 8 600E-01 | 2 271E-02       | -0.1117 | 1.0057  | 2 087E-01              | 2 022E-01 | Composition                 | AA composition of EXT2 of single-spanning proteins (Nakashima-Nishikawa        |
| NAKH020105               | -0.0740 | 1.1492    | 0.000E-03 | 2.2/10-02       | -0.1042 | 1.0313  | 2.00/E-01              | 2.333E-UI | Composition                 | AA composition of MEM of single-spanning proteins (Nakashima-Nishikawa, 1002)  |
| NAKH920105               | -0.0400 | 1 1 2 0 0 | 2.04/E-01 | 5.054E-01       | -0.0048 | 1.0447  | 3.43/E-UI              | 4.432E-UL | Composition                 | AA composition of CVT of multi-spanning proteins (Nakashima-Nishikawa, 1992)   |
| NAKH920105               | -0.1034 | 1 1 2 2 4 | 2.049E-UZ | 0.032E-02       | -0.1404 | 1.0/42  | 1.33/E-U1              | 2.414E-UI | Composition                 | AA composition of EYT of multi-spanning proteins (Nakashima Nichikawa, 1992)   |
| NAKH920107               | -0.0338 | 1.1320    | 3.U//E-UZ | 3.333E-UZ       | -0.0513 | 1.1304  | 2.048E-02              | 4.043E-UZ | Composition                 | AA composition of MEM of multi-spanning proteins (Nakashima Nishikawa, 1992)   |
| NISK800101               | -0.0557 | 1.0143    | 0.1645.05 | 1.925E-01       | -0.0593 | 1.0200  | 3.908E-UI              | 0.//8E-01 | Hydrophobicity              | A composition of MENI of Multi-spanning proteins (Nakasinina-NishikaWa, 1992)  |
| NISK800101               | 0.0079  | 0.7100    | 3.104E-05 | 1 2205 02       | 0.0740  | 0.7003  | 2.244E-UD              | 4.095E-04 | Hydrophobicity              | 0 A contact Humber (Nishikawa Ooi, 1980)                                       |
| 1012/00/101              | 0.0474  | 0.0000    | 7.032E-U5 | 1.2205-03       | 0.0414  | 0.0440  | 3.3436-00              | 1.2136-04 | riyurophobicity             | 14 A CONTACT NUMBER (NISHIKAWA-OO), 1300)                                      |

| NOZY710101  | 0.0574  | 0.7811 | 2.990E-03 | 1.043E-02 | 0.0027  | 0.7394 | 1.821E-04 | 1.478E-03 | Hydrophobicity              | Transfer energy, organic solvent/water (Nozaki-Tanford, 1971)                 |
|-------------|---------|--------|-----------|-----------|---------|--------|-----------|-----------|-----------------------------|-------------------------------------------------------------------------------|
| OOBM770101  | -0.0510 | 0.7574 | 2.655E-03 | 9.892E-03 | -0.0258 | 0.7469 | 9.202E-04 | 4.430E-03 | Hydrophobicity              | Average non-bonded energy per atom (Oobatake-Ooi, 1977)                       |
| OOBM770102  | -0.0516 | 0.8508 | 5.433E-02 | 9.829E-02 | 0.0237  | 0.8661 | 7.254E-02 | 1.318E-01 | Physicochemical properties  | Short and medium range non-bonded energy per atom (Oobatake-Ooi, 1977)        |
| OOBM770103  | -0.0766 | 0.7086 | 3.223E-04 | 2.297E-03 | -0.0678 | 0.7220 | 2.973E-04 | 2.100E-03 | Hydrophobicity              | Long range non-bonded energy per atom (Oobatake-Ooi, 1977)                    |
| OOBM770104  | -0.0643 | 0.7362 | 5.701E-04 | 3.421E-03 | -0.0439 | 0.7863 | 3.765E-03 | 1.307E-02 | Physicochemical properties  | Average non-bonded energy per residue (Oobatake-Ooi, 1977)                    |
| OOBM770105  | -0.0511 | 0.8078 | 1.694E-02 | 4.008E-02 | -0.0234 | 0.8238 | 2.249E-02 | 5.228E-02 | Physicochemical properties  | Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977)     |
| OOBM850101  | 0.0053  | 0.8219 | 5.812E-02 | 1.020E-01 | -0.0169 | 0.7893 | 1.672E-02 | 4.117E-02 | Beta propensity             | Optimized beta-structure-coil equilibrium constant (Oobatake et al., 1985)    |
| OOBM850102  | -0.0962 | 0.8778 | 1.873E-01 | 2.732E-01 | -0.0562 | 0.8903 | 2.042E-01 | 2.901E-01 | Physicochemical properties  | Optimized propensity to form reverse turn (Oobatake et al., 1985)             |
| OOBM850103  | 0.0089  | 0.9064 | 2.620E-01 | 3.608E-01 | -0.0014 | 0.9048 | 2.243E-01 | 3.129E-01 | Hydrophobicity              | Optimized transfer energy parameter (Oobatake et al., 1985)                   |
| OOBM850104  | 0.0269  | 0.7457 | 2.119E-03 | 8.420E-03 | 0.0180  | 0.7806 | 5.506E-03 | 1.731E-02 | Beta propensity             | Optimized average non-bonded energy per atom (Oobatake et al., 1985)          |
| OOBM850105  | -0.0779 | 0.7517 | 6.132E-03 | 1.803E-02 | -0.0468 | 0.8822 | 2.043E-01 | 2.901E-01 | Hydrophobicity              | Optimized side chain interaction parameter (Oobatake et al., 1985)            |
| PAI 1810101 | -0.0564 | 1 1784 | 6 930F-03 | 1 974F-02 | -0.0851 | 1 1138 | 6 672F-02 | 1 230F-01 | Alpha and turn propensities | Normalized frequency of alpha-helix from LG (Palau et al., 1981)              |
| PAL 1810102 | -0.0317 | 1 3018 | 6 717F-05 | 1 167E-03 | -0 1251 | 1 1953 | 6 118F-03 | 1 891F-02 | Alpha and turn propensities | Normalized frequency of alpha-helix from CE (Palau et al. 1981)               |
| PAL 1810103 | 0.0862  | 0 7847 | 9.652E-03 | 2 488F-02 | 0.0700  | 0 7815 | 5 727F-03 | 1.001E 02 | Beta propensity             | Normalized frequency of heta-sheet from LG (Palau et al. 1981)                |
| PAL 1810104 | 0.0728  | 0 7078 | 1 706E-04 | 1 760E-03 | 0.0586  | 0.7297 | 2 650E-04 | 1 932E-03 | Beta propensity             | Normalized frequency of beta-sheet from CE (Palau et al. 1981)                |
| PALI810104  | 0.0728  | 0.0515 | 6 120E-04 | 7.024E-01 | 0.0552  | 1 0146 | 2.030E-04 | 8 520E-01 | Alpha and turn propensities | Normalized frequency of turn from LG (Palau et al., 1981)                     |
| PAL 1810105 | -0.0097 | 1 0865 | 1.0055-01 | 1.054E 01 | 0.0662  | 1.0140 | 1 5155-01 | 2 228E-01 | Alpha and turn propensities | Normalized frequency of turn from CE (Palau et al., 1981)                     |
| PALI810100  | -0.0037 | 0.9755 | 1.0350-01 | 2 7055 01 | 0.0003  | 1.0714 | 1.91/1-01 | 2.5286-01 | Alpha and turn propensities | Normalized frequency of alpha-belix in all-alpha class (Palau et al., 1991)   |
| PALI810107  | 0.1490  | 0.8755 | 2,2805,02 | 2.793E-01 | 0.0615  | 1.0871 | 1.044E-01 | 2.097E-01 | Alpha and turn propensities | Normalized frequency of alpha helix in alpha heta class (Palau et al., 1981)  |
| PALJ810108  | -0.0126 | 1.1629 | 2.289E-02 | 5.103E-02 | -0.0580 | 1.0444 | 4.130E-01 | 5.149E-01 | Alpha and turn propensities | Normalized frequency of alpha helix in alpha (beta class (Palau et al., 1981) |
| PALI810109  | -0.0855 | 1.1502 | 2.090E-02 | 4.765E-02 | -0.1087 | 0.9821 | 0.000E-01 | 9.073E-01 | Alpha and turn propensities | Normalized frequency of alpha-field in alpha/beta class (Palau et al., 1961)  |
| PALJ810110  | 0.0752  | 0.7127 | 1.078E-04 | 1.760E-03 | 0.0752  | 0.7212 | 1.306E-04 | 1.271E-03 | Beta propersity             | Normalized frequency of beta-sheet in all-beta class (Palau et al., 1961)     |
| PALJ810111  | 0.0429  | 0.8393 | 2.529E-02 | 5.525E-02 | 0.0499  | 0.8339 | 1.519E-02 | 3.863E-02 | Hydrophobicity              | Normalized frequency of beta-sheet in alpha+beta class (Palau et al., 1981)   |
| PALJ810112  | 0.0360  | 0.7809 | 6.976E-03 | 1.976E-02 | 0.0541  | 0.7531 | 9.746E-04 | 4.610E-03 | Beta propensity             | Normalized frequency of beta-sneet in alpha/beta class (Palau et al., 1981)   |
| PALJ810113  | -0.0198 | 0.8896 | 2.800E-01 | 3.771E-01 | 0.0428  | 1.0266 | 5.965E-01 | 6.778E-01 | Alpha and turn propensities | Normalized frequency of turn in all-alpha class (Palau et al., 1981)          |
| PALJ810114  | -0.0077 | 0.9793 | 9.471E-01 | 9.648E-01 | 0.0115  | 0.9596 | 7.082E-01 | 7.779E-01 | Alpha and turn propensities | Normalized frequency of turn in all-beta class (Palau et al., 1981)           |
| PALJ810115  | -0.0176 | 0.8765 | 2.109E-01 | 2.988E-01 | 0.0121  | 0.9330 | 5.211E-01 | 6.136E-01 | Alpha and turn propensities | Normalized frequency of turn in alpha+beta class (Palau et al., 1981)         |
| PALJ810116  | 0.0133  | 1.0966 | 1.456E-01 | 2.238E-01 | 0.0421  | 1.0529 | 3.631E-01 | 4.658E-01 | Alpha and turn propensities | Normalized frequency of turn in alpha/beta class (Palau et al., 1981)         |
| PARJ860101  | 0.0336  | 0.8199 | 3.215E-02 | 6.626E-02 | 0.0388  | 0.7604 | 2.113E-03 | 8.212E-03 | Hydrophobicity              | HPLC parameter (Parker et al., 1986)                                          |
| PLIV810101  | 0.0222  | 0.7956 | 1.575E-02 | 3.824E-02 | -0.0127 | 0.7632 | 3.182E-03 | 1.138E-02 | Hydrophobicity              | Partition coefficient (Pliska et al., 1981)                                   |
| PONP800101  | 0.0479  | 0.6693 | 1.676E-05 | 4.341E-04 | 0.0527  | 0.6202 | 2.632E-07 | 2.386E-05 | Hydrophobicity              | Surrounding hydrophobicity in folded form (Ponnuswamy et al., 1980)           |
| PONP800102  | 0.0842  | 0.6625 | 1.160E-05 | 3.741E-04 | 0.0854  | 0.6527 | 2.611E-06 | 1.014E-04 | Hydrophobicity              | Average gain in surrounding hydrophobicity (Ponnuswamy et al., 1980)          |
| PONP800103  | 0.0829  | 0.7246 | 2.848E-04 | 2.199E-03 | 0.0728  | 0.7249 | 1.694E-04 | 1.418E-03 | Hydrophobicity              | Average gain ratio in surrounding hydrophobicity (Ponnuswamy et al., 1980)    |
| PONP800104  | 0.0635  | 0.7752 | 2.650E-03 | 9.892E-03 | 0.0708  | 0.8213 | 1.657E-02 | 4.102E-02 | Hydrophobicity              | Surrounding hydrophobicity in alpha-helix (Ponnuswamy et al., 1980)           |
| PONP800105  | 0.0530  | 0.8432 | 4.698E-02 | 8.967E-02 | 0.0486  | 0.8525 | 5.531E-02 | 1.059E-01 | Hydrophobicity              | Surrounding hydrophobicity in beta-sheet (Ponnuswamy et al., 1980)            |
| PONP800106  | 0.0396  | 0.6976 | 1.119E-03 | 5.634E-03 | 0.0371  | 0.7463 | 4.602E-03 | 1.496E-02 | Hydrophobicity              | Surrounding hydrophobicity in turn (Ponnuswamy et al., 1980)                  |
| PONP800107  | -0.0003 | 0.8272 | 2.688E-02 | 5.803E-02 | -0.0346 | 0.8420 | 3.318E-02 | 7.024E-02 | Hydrophobicity              | Accessibility reduction ratio (Ponnuswamy et al., 1980)                       |
| PONP800108  | 0.0682  | 0.7223 | 2.871E-04 | 2.199E-03 | 0.0606  | 0.7048 | 5.761E-05 | 8.706E-04 | Hydrophobicity              | Average number of surrounding residues (Ponnuswamy et al., 1980)              |
| PRAM820101  | 0.0087  | 0.9197 | 3.766E-01 | 4.710E-01 | 0.0433  | 1.1019 | 1.032E-01 | 1.738E-01 | Hydrophobicity              | Intercept in regression analysis (Prabhakaran-Ponnuswamy, 1982)               |
| PRAM820102  | -0.0354 | 0.7508 | 8.803E-04 | 4.695E-03 | -0.0292 | 0.8284 | 1.749E-02 | 4.248E-02 | Other properties            | Slope in regression analysis x 1.0E1 (Prabhakaran-Ponnuswamy, 1982)           |
| PRAM820103  | -0.0395 | 0.9351 | 5.421E-01 | 6.383E-01 | -0.0948 | 0.9613 | 7.663E-01 | 8.304E-01 | Other properties            | Correlation coefficient in regression analysis (Prabhakaran-Ponnuswamy, 1982) |
| PRAM900101  | -0.0863 | 0.8165 | 5.439E-02 | 9.829E-02 | -0.0019 | 0.7622 | 7.792E-03 | 2.304E-02 | Hydrophobicity              | Hydrophobicity (Prabhakaran, 1990)                                            |
| PRAM900102  | -0.0713 | 1.1462 | 3.141E-02 | 6.546E-02 | -0.0858 | 1.0615 | 2.745E-01 | 3.714E-01 | Alpha and turn propensities | Relative frequency in alpha-helix (Prabhakaran, 1990)                         |
| PRAM900103  | 0.0171  | 0.7835 | 3.963E-03 | 1.283E-02 | -0.0024 | 0.8511 | 4.275E-02 | 8.581E-02 | Beta propensity             | Relative frequency in beta-sheet (Prabhakaran, 1990)                          |
| PRAM900104  | -0.0161 | 0.9623 | 7.853E-01 | 8.452E-01 | 0.0192  | 0.9224 | 4.332E-01 | 5.320E-01 | Alpha and turn propensities | Relative frequency in reverse-turn (Prabhakaran, 1990)                        |
| PTIO830101  | 0.0103  | 1.0102 | 7.632E-01 | 8.354E-01 | -0.0335 | 0.9456 | 5.885E-01 | 6.725E-01 | Alpha and turn propensities | Helix-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)                   |
| PTIO830102  | 0.0491  | 0.7221 | 4.038E-04 | 2.674E-03 | 0.0354  | 0.7469 | 6.475E-04 | 3.521E-03 | Beta propensity             | Beta-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)                    |
| QIAN880101  | -0.0345 | 1.1542 | 1.634E-02 | 3.933E-02 | -0.0264 | 1.1221 | 4.396E-02 | 8.761E-02 | Alpha and turn propensities | Weights for alpha-helix at the window position of -6 (Qian-Sejnowski, 1988)   |
| QIAN880102  | -0.0704 | 1.3230 | 1.169E-05 | 3.741E-04 | -0.1020 | 1.2202 | 1.681E-03 | 6.981E-03 | Alpha and turn propensities | Weights for alpha-helix at the window position of -5 (Qian-Sejnowski, 1988)   |
| QIAN880103  | 0.0238  | 1.3279 | 1.240E-05 | 3.748E-04 | -0.0329 | 1.1561 | 2.333E-02 | 5.377E-02 | Alpha and turn propensities | Weights for alpha-helix at the window position of -4 (Qian-Sejnowski, 1988)   |
| QIAN880104  | -0.0263 | 1.2237 | 2.457E-03 | 9.381E-03 | -0.0860 | 1.2085 | 3.202E-03 | 1.138E-02 | Alpha and turn propensities | Weights for alpha-helix at the window position of -3 (Qian-Sejnowski, 1988)   |
| QIAN880105  | 0.0245  | 1.2058 | 4.571E-03 | 1.446E-02 | -0.0929 | 1.1754 | 1.083E-02 | 2.962E-02 | Alpha and turn propensities | Weights for alpha-helix at the window position of -2 (Qian-Sejnowski, 1988)   |
| QIAN880106  | -0.0147 | 1.2657 | 4.582E-04 | 2.899E-03 | -0.0637 | 1.1930 | 7.358E-03 | 2.199E-02 | Alpha and turn propensities | Weights for alpha-helix at the window position of -1 (Qian-Sejnowski, 1988)   |
| QIAN880107  | -0.0586 | 1.1663 | 1.203E-02 | 3.016E-02 | -0.0867 | 1.1067 | 8.451E-02 | 1.488E-01 | Alpha and turn propensities | Weights for alpha-helix at the window position of 0 (Qian-Sejnowski, 1988)    |

| QIAN880108               | 0.0065  | 1.1297    | 6.960E-02 | 1.187E-01              | -0.0105 | 1.0300 | 5.536E-01              | 6.439E-01 | Alpha and turn propensities  | Weights for alpha-helix at the window position of 1 (Qian-Sejnowski, 1988)                                        |
|--------------------------|---------|-----------|-----------|------------------------|---------|--------|------------------------|-----------|------------------------------|-------------------------------------------------------------------------------------------------------------------|
| QIAN880109               | 0.0054  | 1.0019    | 8.077E-01 | 8.605E-01              | -0.0332 | 0.9955 | 8.774E-01              | 9.073E-01 | Alpha and turn propensities  | Weights for alpha-helix at the window position of 2 (Qian-Sejnowski, 1988)                                        |
| QIAN880110               | -0.0092 | 1.1148    | 1.024E-01 | 1.668E-01              | -0.0501 | 1.0893 | 1.715E-01              | 2.549E-01 | Alpha and turn propensities  | Weights for alpha-helix at the window position of 3 (Qian-Sejnowski, 1988)                                        |
| QIAN880111               | -0.0114 | 1.0055    | 7.666E-01 | 8.374E-01              | -0.0409 | 0.9942 | 8.792E-01              | 9.073E-01 | Alpha and turn propensities  | Weights for alpha-helix at the window position of 4 (Qian-Sejnowski, 1988)                                        |
| QIAN880112               | 0.0174  | 1.0930    | 2.106E-01 | 2.988E-01              | -0.0527 | 1.0723 | 3.046E-01              | 4.012E-01 | Alpha and turn propensities  | Weights for alpha-helix at the window position of 5 (Qian-Sejnowski, 1988)                                        |
| QIAN880113               | -0.0682 | 0.9335    | 4.876E-01 | 5.907E-01              | -0.0637 | 0.9527 | 6.658E-01              | 7.392E-01 | Alpha and turn propensities  | Weights for alpha-helix at the window position of 6 (Qian-Sejnowski, 1988)                                        |
| QIAN880114               | 0.0591  | 0.8403    | 2.013E-02 | 4.621E-02              | 0.0673  | 0.8457 | 1.659E-02              | 4.102E-02 | Hydrophobicity               | Weights for beta-sheet at the window position of -6 (Qian-Seinowski, 1988)                                        |
| QIAN880115               | 0.0284  | 0.8135    | 2.197E-02 | 4.958E-02              | 0.0223  | 0.8062 | 1.141E-02              | 3.072E-02 | Hydrophobicity               | Weights for beta-sheet at the window position of -5 (Qian-Sejnowski, 1988)                                        |
| QIAN880116               | -0.0122 | 0.9850    | 8.735E-01 | 9.037E-01              | 0.0012  | 0.9983 | 9.904E-01              | 9.922E-01 | Hydrophobicity               | Weights for beta-sheet at the window position of -4 (Qian-Sejnowski, 1988)                                        |
| QIAN880117               | -0.0255 | 0.9361    | 4.820E-01 | 5.866E-01              | 0.0312  | 1.1305 | 6.835E-02              | 1.256E-01 | Alpha and turn propensities  | Weights for beta-sheet at the window position of -3 (Qian-Seinowski, 1988)                                        |
| QIAN880118               | -0.0210 | 0.9834    | 9.680E-01 | 9.743E-01              | 0.0046  | 0.9397 | 5.164E-01              | 6.103E-01 | Beta propensity              | Weights for beta-sheet at the window position of -2 (Qian-Sejnowski, 1988)                                        |
| QIAN880119               | -0.0078 | 0.7601    | 8.890E-03 | 2.314E-02              | -0.0383 | 0.7447 | 3.623E-03              | 1.280E-02 | Beta propensity              | Weights for beta-sheet at the window position of -1 (Qian-Sejnowski, 1988)                                        |
| QIAN880120               | 0.0312  | 0.7207    | 1.148E-03 | 5.695E-03              | 0.0065  | 0.7350 | 1.136E-03              | 5.064E-03 | Beta propensity              | Weights for beta-sheet at the window position of 0 (Qian-Seinowski, 1988)                                         |
| QIAN880121               | 0.0355  | 0.6818    | 2.171E-04 | 1.905E-03              | 0.0278  | 0.7017 | 3.122E-04              | 2.150E-03 | Beta propensity              | Weights for beta-sheet at the window position of 1 (Qian-Seinowski, 1988)                                         |
| OIAN880122               | 0.0423  | 0 7354    | 6 650E-04 | 3 729F-03              | 0.0541  | 0 7088 | 8 072F-05              | 9 148F-04 | Beta propensity              | Weights for beta-sheet at the window position of 2 (Qian-Seinowski, 1988)                                         |
| OIAN880123               | 0.1052  | 1.0398    | 5.251E-01 | 6.236E-01              | 0.0904  | 0.9622 | 6.511E-01              | 7.245E-01 | Physicochemical properties   | Weights for beta-sheet at the window position of 3 (Qian-Seinowski, 1988)                                         |
| OIAN880124               | 0.0950  | 1.0968    | 1.362E-01 | 2.111E-01              | 0.1233  | 1.1011 | 1.085E-01              | 1.811E-01 | Physicochemical properties   | Weights for beta-sheet at the window position of 4 (Qian-Seinowski, 1988)                                         |
| QIAN880125               | 0.0617  | 0.8416    | 4 843E-02 | 9 148F-02              | 0.0445  | 0.8359 | 3 072E-02              | 6 672E-02 | Physicochemical properties   | Weights for beta-sheet at the window position of 5 (Qian-Seinowski 1988)                                          |
| QIAN000125               | 0.0504  | 0.9189    | 3.027E-01 | 3 979F-01              | 0.0522  | 0.9051 | 1 960E-01              | 2 821F-01 | Hydrophobicity               | Weights for beta-sheet at the window position of 6 (Qian-Seinowski 1988)                                          |
| QIAN000120               | 0.0329  | 0.8587    | 9 277E-02 | 1 534F-01              | 0.0293  | 0.9247 | 3 811F-01              | 4 846F-01 | Hydrophobicity               | Weights for coil at the window position of -6 (Qian-Seinowski 1988)                                               |
| QIAN680129               | 0.0188  | 0.9867    | 9.001E-01 | 9 27/F-01              | 0.0599  | 1 0209 | 7.4755-01              | 8 133E-01 | Hydrophobicity               | Weights for coil at the window position of -5 (Qian-Seinowski, 1988)                                              |
| QIAN000120               | 0.0033  | 1 0276    | 5.559E-01 | 6 485F-01              | 0.0549  | 0.9853 | 9 842F-01              | 9 879F-01 | Alpha and turn propensities  | Weights for coil at the window position of -4 (Qian-Seinowski, 1988)                                              |
| QIAN000129               | -0.0008 | 1 2965    | 1 380E-05 | 3 753E-04              | 0.0345  | 1 2635 | 6.063E-05              | 8 819F-04 | Alpha and turn propensities  | Weights for coil at the window position of -3 (Qian-Seinowski, 1988)                                              |
| QIAN000130               | -0.0146 | 0.9717    | 8 369E-01 | 8 857F-01              | 0.0529  | 0.9325 | 4 348F-01              | 5 328F-01 | Alpha and turn propensities  | Weights for coil at the window position of -2 (Qian-Seinowski, 1988)                                              |
| QIAN000131<br>QIAN880132 | 0.0140  | 1 0199    | 7 358F-01 | 8 087F-01              | 0.0525  | 0.9525 | 7.057E-01              | 7 771F-01 | Alpha and turn propensities  | Weights for coil at the window position of -1 (Qian-Seinowski, 1988)                                              |
| QIAN000132               | -0.0095 | 0.8956    | 3 297E-01 | 4 250F-01              | 0.0343  | 0.9035 | 3 461E-01              | 4 458F-01 | Alpha and turn propensities  | Weights for coil at the window position of 0 (Oian-Seinowski, 1988)                                               |
| QIAN000135               | -0.0476 | 0.8556    | 1 358E-01 | 2 110F-01              | -0.0048 | 0.8533 | 9 228E-02              | 1 589E-01 | Alpha and turn propensities  | Weights for coil at the window position of 1 (Qian-Seinowski, 1988)                                               |
| QIAN000134               | -0.0470 | 0.8010    | 1.356E 01 | 2.110E 01<br>2.036E-01 | -0.0184 | 0.8555 | 1.010E-01              | 1.305E 01 | Alpha and turn propensities  | Weights for coil at the window position of 2 (Qian-Seinowski, 1988)                                               |
| QIAN880136               | -0.0044 | 0.8845    | 2 908E-01 | 3 877F-01              | 0.0046  | 0.9167 | 4 598F-01              | 5 547E-01 | Alpha and turn propensities  | Weights for coil at the window position of 3 (Qian-Seinowski, 1988)                                               |
| QIAN880137               | -0.0425 | 0.8419    | 6 142E-02 | 1 071F-01              | -0.0161 | 0.7905 | 7 232E-03              | 2 198F-02 | Alpha and turn propensities  | Weights for coil at the window position of 4 (Qian-Seinowski, 1988)                                               |
| QIAN000137               | 0.0069  | 1 0132    | 6.085E-01 | 6 998F-01              | 0.0529  | 1 0047 | 6 943E-01              | 7 677E-01 | Alpha and turn propensities  | Weights for coil at the window position of 5 (Qian-Seinowski, 1988)                                               |
| QIAN000130               | 0.0571  | 0 9478    | 6.692E-01 | 7 537F-01              | 0.0325  | 0 9981 | 7 860F-01              | 8 433E-01 | Alpha and turn propensities  | Weights for coil at the window position of 6 (Qian-Seinowski, 1988)                                               |
| BACS770101               | -0.0150 | 0.7375    | 1 172E-03 | 5 7/2F-03              | -0.0201 | 0.7068 | 1 /995-0/              | 1 315E-03 | Hydrophobicity               | Average reduced distance for C-alpha (Backovsky-Scheraga, 1977)                                                   |
| RAC5770101               | -0.0130 | 0.7573    | 2 0065-02 | 1 272E-02              | -0.0213 | 0.7008 | 1.4991-04              | 2 7095-02 | Hydrophobicity               | Average reduced distance for side chain (Rackovsky Scheraga, 1577)                                                |
| RAC3770102               | -0.0300 | 0.7554    | 9.7225-04 | 5 125E-02              | -0.0193 | 0.7130 | 4.1350-04              | 1 5725-02 | Hydrophobicity               | Side chain orientational preference (Packovsky-Scherage, 1977)                                                    |
| RAC5770103               | -0.0437 | 0.7150    | 4 2275 02 | 0 4765 07              | -0.0231 | 0.7045 | 4.9450-03              | 2 5975 02 | Hydrophobicity               | Average relative fractional occurrence in $\Delta O(i)$ (Packovsky Scherage, 1977)                                |
| RAC5820101               | -0.0429 | 1 0042    | 4.557E-02 | 0.420E-02              | -0.0377 | 1.0225 | 9.062E-05              | 2.367E-02 | Other properties             | Average relative fractional occurrence in AD(i) (Rackovsky-Scherage, 1982)                                        |
| RAC5820102               | -0.1827 | 0.00943   | 2 7825-01 | 2 755E-01              | -0.2105 | 0.9679 | 7 7405-01              | 9 255E-01 | Hydrophobicity               | Average relative fractional occurrence in AI (i) (Rackovsky-Scheraga, 1982)                                       |
| RAC5020103               | -0.0033 | 1 5 8 7 4 | 5 208E-12 | 2 882E-00              | 0.0354  | 1 4752 | 7.8605-10              | 4 2765-07 | Alpha and turn propensities  | Average relative fractional occurrence in FL(i) (Rackovsky Scheraga, 1982)                                        |
| RAC5820104               | 0.0586  | 0 7395    | 5.012E-04 | 2.002L-03              | 0.0473  | 0.7829 | 7.800E-10<br>2.261E-03 | 4.270E-07 | Composition                  | Average relative fractional occurrence in $EQ(i)$ (Rackovsky Scheraga, 1982)                                      |
| RAC5820105               | 0.0580  | 1 0820    | 1 975E-01 | 2 838F-01              | 0.0237  | 1 1301 | 2.201E-03              | 9 309F-03 | Other properties             | Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982)                                        |
| RAC5820100               | 0.0007  | 1.0820    | 5.0225.00 | 1.61/E-06              | 0.2058  | 1.1501 | 4.774E-02              | 1.640E-02 | Other properties             | Average relative fractional occurrence in $\Omega(i_1)$ (Rackovsky-Scherage, 1982)                                |
| RAC5820107               | 0.1472  | 1.4202    | 1 7EOE 02 | 1.0141-00              | 0.2038  | 1.5050 | 2 2005 01              | 2 7515 01 | Alpha and turn proponsitios  | Average relative fractional occurrence in AD(i 1) (Rackovsky Scheraga, 1982)                                      |
| RAC5820108               | -0.0103 | 1.2035    | 4.759E-05 | 1.400E-02<br>8.006E-01 | -0.0370 | 1 1092 | 2.800E-01              | 3.731E-01 | Other properties             | Average relative fractional occurrence in AL(i-1) (Rackovsky-Scheraga, 1982)                                      |
| RAC5820103               | 0.1128  | 0.0215    | 4.0275.01 | E 012E 01              | 0.1401  | 0.8046 | 2.0905.01              | 2.4771-01 | Alpha and turn propensities  | Average relative fractional occurrence in EL(i-1) (Nackovsky-Scheraga, 1982)                                      |
| RAC5820110               | -0.0383 | 0.9213    | 4.027E-01 | 2 772E 01              | 0.0211  | 0.0940 | 2.060E-01              | 2.952E-01 | Rota proponsity              | Average relative fractional occurrence in EQ(-1) (Nackovsky-Scheraga, 1982)                                       |
| RAC5820111               | -0.0057 | 0.9023    | 2.8085-01 | 3.//ZE-UI              | -0.0049 | 0.9125 | 3.122E-UL<br>9.1E2E.01 | 4.093E-01 | Alpha and turn propossition  | Average relative fractional occurrence in EP/i 1) (Rackovsky-Scheraga, 1982)                                      |
| RAC5020112               | 0.0921  | 1 2217    | 3.304E-U1 | 4.300E-01              | 0.0035  | 1 2496 | 0.1035-01              |           | Other properties             | Value of theta(i) (Packovcky-Scherage 1982)                                                                       |
| RAC5620113               | 0.0932  | 1.331/    | 9.03/E-05 | 1.240E-U3              | 0.1292  | 1.2480 | 1.382E-U3              | 0.725E-U3 | Alpha and turn proponsition  | value of theta(1) (Naukuvsky-sullelagd, 1982)                                                                     |
| RAC5620114               | 0.0146  | T.0323    | 1.789E-U1 | 2.023E-UI              | 0.0330  | 1.00/9 | 3.001E-01              | 3.909E-U1 | Aipila and turn propensities | value of theta(I-1) (Ratkovsky-schedga, 1982)<br>Transfer free energy from shy to wat (Dadsieles Welforder, 1989) |
| RADA880101               | 0.0619  | 0.8564    | 1.470E-01 | 2.24/E-UI              | 0.0229  | 0.7854 | 1.051E-UZ              | 4.102E-02 | Hydrophobicity               | Transfer free energy from est to wat (Radzicka-Wolfender, 1988)                                                   |
| RADA880102               | 0.0562  | 0.8157    | 9.801E-03 | 2.503E-02              | 0.0482  | 0.7547 | 2.011E-04              | 1.932E-03 | nyurupriupriupriury          | Transfer free energy from out to wat (Radzicka-Wolfenden, 1988)                                                   |
| RADA880103               | -0.0399 | 0.7515    | 5.490E-03 | 1.032E-02              | -0.0399 | 0.8186 | 3.542E-U2              | 7.38/E-U2 | Physicochemical properties   | Transfer free energy from vap to crix (Radzicka-Wolfenden, 1988)                                                  |
| KADA880104               | 0.0716  | 0.8161    | 5.066E-02 | 9.395E-02              | 0.0504  | 0.8039 | 2./2/E-02              | 0.105E-02 | Hydrophobicity               | Transfer free energy from chx to oct (Radzicka-wolfenden, 1988)                                                   |

| RADA880105   | 0.0640  | 0.8324 | 3.503E-02 | 7.062E-02 | 0.0547  | 0.8328 | 2.642E-02 | 5.988E-02 | Hydrophobicity              | Transfer free energy from vap to oct (Radzicka-Wolfenden, 1988)       |
|--------------|---------|--------|-----------|-----------|---------|--------|-----------|-----------|-----------------------------|-----------------------------------------------------------------------|
| RADA880106   | 0.0020  | 0.8494 | 1.034E-01 | 1.678E-01 | -0.0108 | 0.8538 | 9.452E-02 | 1.617E-01 | Physicochemical properties  | Accessible surface area (Radzicka-Wolfenden, 1988)                    |
| RADA880107   | 0.0695  | 0.7834 | 2.102E-02 | 4.785E-02 | 0.0451  | 0.7433 | 3.907E-03 | 1.337E-02 | Hydrophobicity              | Energy transfer from out to in(95%buried) (Radzicka-Wolfenden, 1988)  |
| RADA880108   | 0.0670  | 0.7112 | 6.452E-04 | 3.694E-03 | 0.0597  | 0.6770 | 6.879E-05 | 8.819E-04 | Hydrophobicity              | Mean polarity (Radzicka-Wolfenden, 1988)                              |
| RICJ880101   | 0.0534  | 0.9985 | 8.513E-01 | 8.940E-01 | 0.0627  | 1.0862 | 1.700E-01 | 2.541E-01 | Other properties            | Relative preference value at N" (Richardson-Richardson, 1988)         |
| RICJ880102   | 0.0534  | 0.9985 | 8.501E-01 | 8.940E-01 | 0.0627  | 1.0862 | 1.708E-01 | 2.546E-01 | Other properties            | Relative preference value at N' (Richardson-Richardson, 1988)         |
| RICJ880103   | 0.0740  | 0.9569 | 6.300E-01 | 7.210E-01 | 0.0900  | 1.0061 | 8.182E-01 | 8.610E-01 | Other properties            | Relative preference value at N-cap (Richardson-Richardson, 1988)      |
| RICJ880104   | 0.0341  | 0.8645 | 1.948E-01 | 2.818E-01 | -0.0377 | 0.9683 | 7.781E-01 | 8.365E-01 | Hydrophobicity              | Relative preference value at N1 (Richardson-Richardson, 1988)         |
| RICJ880105   | 0.0393  | 1.1347 | 8.971E-02 | 1.497E-01 | 0.0606  | 1.0363 | 5.656E-01 | 6.546E-01 | Hydrophobicity              | Relative preference value at N2 (Richardson-Richardson, 1988)         |
| RICJ880106   | 0.0239  | 0.9863 | 9.568E-01 | 9.684E-01 | 0.0034  | 0.8755 | 2.686E-01 | 3.699E-01 | Hydrophobicity              | Relative preference value at N3 (Richardson-Richardson, 1988)         |
| RICJ880107   | -0.0044 | 1.0166 | 7.085E-01 | 7.870E-01 | -0.0487 | 1.0310 | 5.686E-01 | 6.563E-01 | Alpha and turn propensities | Relative preference value at N4 (Richardson-Richardson, 1988)         |
| RICJ880108   | -0.0565 | 0.9775 | 8.719E-01 | 9.037E-01 | -0.0296 | 0.9736 | 8.069E-01 | 8.557E-01 | Hydrophobicity              | Relative preference value at N5 (Richardson-Richardson, 1988)         |
| RICJ880109   | 0.0021  | 1.3155 | 3.116E-06 | 1.883E-04 | -0.0461 | 1.2213 | 5.044E-04 | 3.154E-03 | Alpha and turn propensities | Relative preference value at Mid (Richardson-Richardson, 1988)        |
| RICJ880110   | -0.0691 | 1.3076 | 4.695E-06 | 2.322E-04 | -0.1083 | 1.2169 | 6.666E-04 | 3.555E-03 | Alpha and turn propensities | Relative preference value at C5 (Richardson-Richardson, 1988)         |
| RICJ880111   | 0.0048  | 0.8957 | 1.666E-01 | 2.483E-01 | 0.0007  | 0.8660 | 5.175E-02 | 9.982E-02 | Hydrophobicity              | Relative preference value at C4 (Richardson-Richardson, 1988)         |
| RICJ880112   | -0.0462 | 1.0423 | 4.965E-01 | 5.989E-01 | -0.0648 | 0.9932 | 9.740E-01 | 9.794E-01 | Alpha and turn propensities | Relative preference value at C3 (Richardson-Richardson, 1988)         |
| RICJ880113   | -0.1117 | 0.9256 | 4.093E-01 | 5.083E-01 | -0.0992 | 0.8531 | 7.270E-02 | 1.318E-01 | Alpha and turn propensities | Relative preference value at C2 (Richardson-Richardson, 1988)         |
| RICJ880114   | -0.0125 | 0.8508 | 9.474E-02 | 1.562E-01 | -0.0076 | 0.9837 | 9.938E-01 | 9.938E-01 | Alpha and turn propensities | Relative preference value at C1 (Richardson-Richardson, 1988)         |
| RICJ880115   | -0.0162 | 0.9657 | 7.933E-01 | 8.479E-01 | 0.0523  | 1.0330 | 5.847E-01 | 6.697E-01 | Other properties            | Relative preference value at C-cap (Richardson-Richardson, 1988)      |
| RICJ880116   | -0.1282 | 0.8662 | 1.646E-01 | 2.467E-01 | -0.0846 | 0.8542 | 1.035E-01 | 1.738E-01 | Alpha and turn propensities | Relative preference value at C' (Richardson-Richardson, 1988)         |
| RIC1880117   | 0 1168  | 0.9858 | 9 595F-01 | 9 684F-01 | 0 1039  | 0.9693 | 8 147F-01 | 8 595E-01 | Alpha and turn propensities | Relative preference value at C" (Richardson-Richardson, 1988)         |
| ROBB760101   | -0.0467 | 1 2977 | 1 747F-04 | 1 760E-03 | -0.0864 | 1 1920 | 9 735E-03 | 2 716E-02 | Alpha and turn propensities | Information measure for alpha-belix (Robson-Suzuki, 1976)             |
| ROBB760101   | 0.0464  | 0.9100 | 3 265E-01 | 4 229E-01 | 0.0183  | 0.9105 | 2 897E-01 | 3 853E-01 | Hydronhobicity              | Information measure for N-terminal belix (Robson-Suzuki, 1976)        |
| ROBB760102   | -0.0125 | 1 2376 | 2 325E-03 | 9.033E-03 | -0.0359 | 1 1285 | 7.634E-02 | 1 362E-01 | Alpha and turn propensities | Information measure for middle belix (Robson-Suzuki, 1976)            |
| ROBB760103   | 0.0125  | 0.8645 | 1 58/F-01 | 2 401E-01 | 0.0335  | 0.8058 | 2 880F-02 | 6.420E-02 | Alpha and turn propensities | Information measure for C-terminal helix (Robson-Suzuki, 1976)        |
| ROBB760104   | 0.0505  | 0.8106 | 2 277E-02 | 5.098F-02 | 0.0396  | 0.8050 | 2.000E 02 | 4 772E-02 | Reta propensity             | Information measure for extended (Robson-Suzuki, 1976)                |
| ROBB760105   | 0.0015  | 0.0100 | 2.277E 02 | 1 102E-02 | 0.0350  | 0.0154 | 2.0072.02 | 1.0075-02 | Beta propensity             | Information measure for pleated-sheet (Robson-Suzuki, 1976)           |
| ROBB760107   | 0.0207  | 1 1733 | 1 291F-02 | 3 211E-02 | 0.0267  | 1 1672 | 1 327E-02 | 3 453E-02 | Alpha and turn propensities | Information measure for extended without H-bond (Robson-Suzuki, 1976) |
| ROBB760108   | -0.0215 | 1 2718 | 7 201E-05 | 1 187E-03 | 0.0105  | 1 2097 | 1.327E 02 | 1 947E-03 | Alpha and turn propensities | Information measure for turn (Robson-Suzuki, 1976)                    |
| ROBB760109   | 0.0303  | 1.0594 | 3 036E-01 | 3 979F-01 | 0.0388  | 1.2037 | 3 353E-01 | 4.354F-01 | Alpha and turn propensities | Information measure for N-terminal turn (Robson-Suzuki, 1976)         |
| ROBB760105   | -0.0118 | 1 2555 | 2 087E-04 | 1 905E-03 | 0.0500  | 1 21/3 | 8 556E-04 | 4.354E 01 | Alpha and turn propensities | Information measure for middle turn (Robson-Suzuki, 1976)             |
| ROBB760110   | 0.0750  | 1.2335 | 1 267E-02 | 6 272E-02 | 0.1035  | 1 2621 | 1 227E-04 | 4.130E-03 | Alpha and turn propensities | Information measure for C-terminal turn (Robson-Suzuki, 1976)         |
| ROBD700111   | 0.0730  | 1.2290 | 0 5075-03 | 0.373E-03 | 0.0324  | 0.0760 | 9 EGOE 01 | 2.230L-03 | Alpha and turn propensities | Information measure for coil (Robson-Suzuki, 1976)                    |
| ROBB760112   | 0.0170  | 1.0020 | 0.302E-01 | 6.976E-01 | 0.0208  | 1 2001 | 1 220E 02 | 6.921E-01 | Alpha and turn propensities | Information measure for loop (Robson-Suzuki, 1976)                    |
| ROBB700113   | -0.0228 | 0.7562 | 1.300E-03 | 0.920E-03 | 0.1107  | 0.7240 | 1.2392-03 | 1 EEEE 02 | Alpha and turn propensities | Hudration free operate (Robson Ocauthorne, 1970)                      |
| ROBD750101   | 0.0397  | 0.7505 | 1.859E-05 | 1.0912-03 | 0.0397  | 0.7240 | 1.930E-04 | 1.303E-03 | Rhysicoshamical properties  | Moan area buried on transfer (Rose et al. 1975)                       |
| R03G850101   | 0.0420  | 0.7478 | 5.019E-03 | 1.046E-02 | 0.0210  | 0.7672 | 4.449E-03 | 1.458E-02 |                             | Mean fractional area loss (Dose et al., 1985)                         |
| RUSG850102   | 0.0033  | 0.0047 | 5.310E-05 | 9.961E-04 | 0.0013  | 0.0085 | 3.020E-05 | 5.708E-04 | Hydrophobicity              | Ride chain hydropothy, uncorrected for solution (Decemon, 1989)       |
| RUSIVI880101 | -0.0433 | 0.8705 | 2.007E-01 | 2.805E-01 | -0.0044 | 0.7799 | 1.323E-02 | 3.453E-02 | Hydrophobicity              | Side chain hydropathy, uncorrected for solvation (Roseman, 1988)      |
| RUSIVI880102 | -0.0392 | 0.7762 | 1.300E-02 | 3.210E-02 | -0.0037 | 0.7293 | 1.487E-03 | 0.371E-03 | Hydrophobicity              | Side chain hydropathy, corrected for solvation (Rosenian, 1988)       |
| RUSIVI880103 | 0.0700  | 0.9719 | 9.434E-01 | 9.6292-01 | 0.0054  | 1.0180 | 5.094E-01 | 0.503E-01 | Hydrophobicity              | Loss of side chain hydropathy by helix formation (Roseman, 1988)      |
| SIIVI2760101 | 0.0036  | 0.7721 | 2.738E-03 | 9.913E-03 | -0.0255 | 0.7531 | 5.808E-04 | 3.301E-03 | Alpha and turn proponsition | Dringing component L (Speeth 1066)                                    |
| SNEP660101   | -0.0364 | 1.0698 | 2.688E-01 | 3.655E-01 | -0.1101 | 1.1028 | 1.18/E-01 | 1.944E-01 | Alpha and turn propensities | Principal component I (Sneath, 1966)                                  |
| SNEP660102   | -0.0108 | 0.9131 | 3.338E-01 | 4.282E-01 | -0.0194 | 0.8485 | 5.794E-02 | 1.098E-01 | Hydrophobicity              | Principal component II (Sneath, 1966)                                 |
| SNEP660103   | 0.0603  | 0.8476 | 3.004E-02 | 6.309E-02 | 0.0534  | 0.8615 | 3.797E-02 | 7.796E-02 | Physicochemical properties  | Principal component III (Sneath, 1966)                                |
| SNEP660104   | 0.0871  | 1.0228 | 6.340E-01 | 7.231E-01 | 0.0838  | 1.0727 | 2.453E-01 | 3.413E-01 | Alpha and turn propensities | Principal component IV (Sneath, 1966)                                 |
| SUEM840101   | -0.0466 | 1.0729 | 2./19E-01 | 3.689E-01 | -0.1035 | 1.0118 | 7.164E-01 | 7.825E-01 | Alpha and turn propensities | Zimm-Bragg parameter s at 20 C (Sueki et al., 1984)                   |
| SUEM840102   | 0.0524  | 0.8464 | 7.341E-02 | 1.248E-01 | -0.0244 | 0.8122 | 1.870E-02 | 4.500E-02 | Hydrophobicity              | Zimm-Bragg parameter sigma x 1.0E4 (Sueki et al., 1984)               |
| SWER830101   | 0.0438  | 0.8286 | 3.580E-02 | 7.185E-02 | 0.0438  | 0.7511 | 1.095E-03 | 4.947E-03 | Hydrophobicity              | Optimal matching hydrophobicity (Sweet-Eisenberg, 1983)               |
| TANS770101   | -0.0703 | 1.2482 | 1.097E-03 | 5.576E-03 | -0.1012 | 1.1475 | 3.714E-02 | 7.652E-02 | Alpha and turn propensities | Normalized trequency of alpha-helix (Tanaka-Scheraga, 1977)           |
| TANS770102   | -0.0424 | 1.0212 | 5.527E-01 | 6.467E-01 | -0.0581 | 1.0806 | 1.454E-01 | 2.267E-01 | Alpha and turn propensities | Normalized trequency of isolated helix (Tanaka-Scheraga, 1977)        |
| TANS770103   | 0.0336  | 1.0372 | 4.991E-01 | 6.007E-01 | 0.0123  | 0.9050 | 3.651E-01 | 4.674E-01 | Beta propensity             | Normalized frequency of extended structure (Tanaka-Scheraga, 1977)    |
| TANS770104   | -0.0752 | 0.7909 | 3.152E-02 | 6.546E-02 | -0.0663 | 0.7765 | 1.625E-02 | 4.092E-02 | Alpha and turn propensities | Normalized frequency of chain reversal R (Tanaka-Scheraga, 1977)      |
| TANS770105   | 0.1836  | 1.1898 | 4.826E-03 | 1.500E-02 | 0.2304  | 1.1445 | 1.442E-02 | 3.700E-02 | Other properties            | Normalized frequency of chain reversal S (Tanaka-Scheraga, 1977)      |

|   | TANS770106  | 0.0480  | 0.8481 | 5.231E-02              | 9.582E-02 | 0.0712  | 0.9136 | 2.784E-01 | 3.740E-01 | Hydrophobicity              | Normalized frequency of chain reversal D (Tanaka-Scheraga, 1977)                       |
|---|-------------|---------|--------|------------------------|-----------|---------|--------|-----------|-----------|-----------------------------|----------------------------------------------------------------------------------------|
|   | TANS770107  | 0.0943  | 1.1380 | 8.158E-02              | 1.375E-01 | 0.1943  | 1.2373 | 3.130E-03 | 1.128E-02 | Other properties            | Normalized frequency of left-handed helix (Tanaka-Scheraga, 1977)                      |
|   | TANS770108  | -0.0357 | 0.9827 | 9.725E-01              | 9.743E-01 | 0.0138  | 1.0709 | 2.029E-01 | 2.897E-01 | Hydrophobicity              | Normalized frequency of zeta R (Tanaka-Scheraga, 1977)                                 |
|   | TANS770109  | 0.0730  | 0 9122 | 3 531F-01              | 4 477F-01 | 0 1067  | 1 0769 | 2 012F-01 | 2 885E-01 | Other properties            | Normalized frequency of coil (Tanaka-Scheraga, 1977)                                   |
|   | TANS770110  | 0.0109  | 0.9800 | 9.050F-01              | 9 290F-01 | 0.0658  | 0.9564 | 6 421F-01 | 7 202E-01 | Alpha and turn propensities | Normalized frequency of chain reversal (Tanaka-Scheraga, 1977)                         |
|   | VASM830101  | -0.0138 | 0.9956 | 8 / 98F-01             | 8 9/0E-01 | -0.0070 | 1 0031 | 8 013E-01 | 8 520E-01 | Alpha and turn propensities | Relative nonulation of conformational state A (Vasquez et al. 1983)                    |
|   | VASM820101  | -0.0130 | 0.9530 | 7 2585-01              | 8 016E-01 | -0.0574 | 0.0814 | 0.1265-01 | 0.320E 01 | Hydrophobicity              | Relative population of conformational state C (Vasquez et al., 1983)                   |
|   | VASN830102  | 0.0471  | 0.9038 | 2 754E-01              | 0.027E-01 | -0.0374 | 0.9814 | 9.130L-01 | 5.067E-01 | Hydrophobicity              | Relative population of conformational state C (Vasquez et al., 1983)                   |
|   | VA310830103 | 0.0742  | 0.9780 | 8.7341-01              | 9.0371-01 | 0.0030  | 1.0462 | 4.0421-01 | 5.0071-01 | Hydrophobicity              | Electron ion interaction potential (Velikovic et al. 1985)                             |
|   | VELV850101  | 0.0274  | 0.9775 | 8.032E-01              | 8.996E-01 | 0.0320  | 1.0462 | 4.303E-01 | 5.311E-01 | Hydrophobicity              | Bitterness (Venenzi, 1084)                                                             |
|   | VEIN1840101 | 0.0305  | 0.7618 | 2.400E-03              | 9.381E-03 | 0.0207  | 0.7681 | 1.8/9E-03 | 7.350E-03 |                             | Billerness (vendizi, 1984)                                                             |
|   | VHEG/90101  | -0.0736 | 0.9346 | 4.005E-01              | 5.715E-01 | -0.0012 | 0.8900 | 1.785E-01 | 2.032E-01 |                             | Average interesting and side shain stars (Marris Marris 1979)                          |
|   | WARP/80101  | -0.0023 | 0.8376 | 4.256E-02              | 8.299E-02 | -0.0264 | 0.7973 | 7.902E-03 | 2.319E-02 | Hydrophobicity              | Average interactions per side chain atom (warme-Morgan, 1978)                          |
|   | WEBA780101  | -0.1438 | 0.7631 | 1.598E-03              | 6.954E-03 | -0.0844 | 0.7950 | 4.061E-03 | 1.364E-02 | Physicochemical properties  | RF value in high salt chromatography (Weber-Lacey, 1978)                               |
|   | WERD780101  | 0.0679  | 0.7161 | 2.495E-04              | 2.055E-03 | 0.0501  | 0.7097 | 8.064E-05 | 9.148E-04 | Hydrophobicity              | Propensity to be buried inside (Wertz-Scheraga, 1978)                                  |
|   | WERD780102  | 0.1192  | 0.9422 | 5.498E-01              | 6.446E-01 | 0.1291  | 0.9425 | 5.172E-01 | 6.103E-01 | Other properties            | Free energy change of epsilon(i) to epsilon(ex) (Wertz-Scheraga, 1978)                 |
|   | WERD780103  | 0.1260  | 0.9820 | 9.721E-01              | 9.743E-01 | 0.0796  | 1.0411 | 4.529E-01 | 5.487E-01 | Hydrophobicity              | Free energy change of alpha(Ri) to alpha(Rh) (Wertz-Scheraga, 1978)                    |
|   | WERD780104  | 0.0436  | 0.8603 | 9.849E-02              | 1.614E-01 | 0.0436  | 0.8464 | 5.783E-02 | 1.098E-01 | Hydrophobicity              | Free energy change of epsilon(i) to alpha(Rh) (Wertz-Scheraga, 1978)                   |
|   | WOEC730101  | -0.0120 | 0.8873 | 2.599E-01              | 3.588E-01 | 0.0037  | 0.8179 | 4.171E-02 | 8.435E-02 | Hydrophobicity              | Polar requirement (Woese, 1973)                                                        |
|   | WOLR810101  | 0.0553  | 0.8546 | 6.888E-02              | 1.178E-01 | 0.0159  | 0.8360 | 2.893E-02 | 6.424E-02 | Hydrophobicity              | Hydration potential (Wolfenden et al., 1981)                                           |
|   | WOLS870101  | 0.0110  | 0.8413 | 4.475E-02              | 8.602E-02 | 0.0316  | 0.8145 | 1.209E-02 | 3.209E-02 | Hydrophobicity              | Principal property value z1 (Wold et al., 1987)                                        |
|   | WOLS870102  | -0.0295 | 0.8538 | 8.882E-02              | 1.487E-01 | -0.0168 | 0.8858 | 1.879E-01 | 2.733E-01 | Physicochemical properties  | Principal property value z2 (Wold et al., 1987)                                        |
|   | WOLS870103  | 0.1282  | 1.0827 | 3.251E-01              | 4.221E-01 | 0.1282  | 1.0774 | 2.858E-01 | 3.811E-01 | Alpha and turn propensities | Principal property value z3 (Wold et al., 1987)                                        |
|   | YUTK870101  | 0.0553  | 0.7862 | 3.317E-03              | 1.121E-02 | 0.0344  | 0.7626 | 5.024E-04 | 3.154E-03 | Hydrophobicity              | Unfolding Gibbs energy in water, pH7.0 (Yutani et al., 1987)                           |
|   | YUTK870102  | 0.0188  | 0.9827 | 9.348E-01              | 9.577E-01 | -0.0279 | 0.8797 | 1.443E-01 | 2.261E-01 | Hydrophobicity              | Unfolding Gibbs energy in water, pH9.0 (Yutani et al., 1987)                           |
|   | YUTK870103  | 0.1178  | 0.8675 | 1.261E-01              | 1.983E-01 | 0.0743  | 0.9453 | 5.779E-01 | 6.647E-01 | Hydrophobicity              | Activation Gibbs energy of unfolding, pH7.0 (Yutani et al., 1987)                      |
|   | YUTK870104  | 0.1079  | 0.8833 | 2.181E-01              | 3.074E-01 | 0.0812  | 0.9535 | 6.931E-01 | 7.677E-01 | Hydrophobicity              | Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987)                      |
|   | 7ASB820101  | 0.0602  | 0 9057 | 2 907F-01              | 3 877F-01 | 0.0641  | 0 8928 | 1 874F-01 | 2 733E-01 | Physicochemical properties  | Dependence of partition coefficient on ionic strength (Zaslavsky et al.                |
|   | ZIMI680101  | -0.0386 | 0.8249 | 2.5072 01<br>2.515E-02 | 5 517E-02 | -0.0204 | 0 7880 | 4 338F-03 | 1 430E-02 | Hydronhobicity              | Hydronhobicity (Zimmerman et al. 1968)                                                 |
|   | ZIMI680102  | 0.0167  | 0.8528 | 1 343E-01              | 2 100E-01 | -0.0106 | 0 9048 | 3 114F-01 | 4 092E-01 | Physicochemical properties  | Bulkiness (Zimmerman et al. 1968)                                                      |
|   | ZIMI680103  | -0.0579 | 0.9005 | 3 035E-01              | 3 979F-01 | -0.0266 | 0.8466 | 6.478E-02 | 1 199F-01 | Hydronhobicity              | Polarity (Zimmerman et al. 1968)                                                       |
|   | ZIMI680104  | 0.0575  | 0.9003 | 6.407E-02              | 1 122E-01 | -0.11/2 | 0.8969 | 2 740E-01 | 2 71/E_01 | Hydrophobicity              | Isoelectric point (Zimmerman et al. 1968)                                              |
|   | ZIMI680105  | -0.0516 | 0.0201 | 6.662E-01              | 7 5105-01 | -0.0740 | 0.0005 | 2.7402.01 | 2 618E-01 | Hydrophobicity              | PE rank (Zimmerman et al. 1969)                                                        |
|   | 21100000103 | 0.0510  | 0.9305 | 6.002L-01              | 7.319L-01 | -0.0740 | 0.3080 | 4.0625.01 | 5.018L-01 | Undefined                   | Normalized positional residue frequency at helix termini N/!(Aurora-Pose               |
|   | AURR980101  | -0.1047 | 0.9300 | 5.1572-01              | 0.115E-01 | -0.1102 | 0.9207 | 4.0022-01 | 0.241F 01 | Undefined                   | Normalized positional residue frequency at helix termini N <sup>44</sup> (Autora Rose, |
|   | AURR980102  | -0.1359 | 0.8120 | 5.000E-02              | 9.999E-02 | -0.0896 | 0.9783 | 9.003E-01 | 9.2412-01 | Undefined                   | Normalized positional residue frequency at helix termini N (Aurora-Rose,               |
|   | AURR980103  | -0.0339 | 1.0570 | 4.145E-01              | 5.124E-01 | -0.0518 | 1.1279 | 8.320E-02 | 1.470E-01 | Undefined                   | Normalized positional residue frequency at helix termini N (Aurora-Rose,               |
|   | AURR980104  | -0.0176 | 0.8252 | 4.954E-02              | 9.262E-02 | -0.0231 | 0.8695 | 1.356E-01 | 2.156E-01 | Undefined                   | Normalized positional residue frequency at helix termini N (Aurora-Rose,               |
|   | AURR980105  | 0.0088  | 0.9013 | 2.656E-01              | 3.634E-01 | -0.0068 | 0.9310 | 4.426E-01 | 5.399E-01 | Undefined                   | Normalized positional residue frequency at helix termini Nc (Aurora-Rose,              |
|   | AURR980106  | -0.1128 | 0.9032 | 3.168E-01              | 4.133E-01 | -0.1259 | 0.9012 | 2./36E-01 | 3./14E-01 | Undefined                   | Normalized positional residue frequency at helix termini N1 (Aurora-Rose,              |
|   | AURR980107  | -0.0476 | 1.1417 | 1.003E-01              | 1.639E-01 | -0.0980 | 1.0450 | 4.938E-01 | 5.892E-01 | Undefined                   | Normalized positional residue frequency at helix termini N2 (Aurora-Rose,              |
|   | AURR980108  | -0.0530 | 1.2708 | 1.153E-04              | 1.476E-03 | -0.1012 | 1.1364 | 3.492E-02 | 7.335E-02 | Undefined                   | Normalized positional residue frequency at helix termini N3 (Aurora-Rose,              |
|   | AURR980109  | -0.0386 | 1.2155 | 1.338E-03              | 6.365E-03 | -0.1061 | 1.0848 | 1.425E-01 | 2.240E-01 | Undefined                   | Normalized positional residue frequency at helix termini N4 (Aurora-Rose,              |
|   | AURR980110  | -0.0882 | 1.2727 | 8.475E-05              | 1.246E-03 | -0.0934 | 1.1392 | 2.392E-02 | 5.491E-02 | Undefined                   | Normalized positional residue frequency at helix termini N5 (Aurora-Rose,              |
|   | AURR980111  | -0.0804 | 1.3297 | 2.858E-05              | 5.757E-04 | -0.1257 | 1.1870 | 9.581E-03 | 2.701E-02 | Undefined                   | Normalized positional residue frequency at helix termini C5 (Aurora-Rose,              |
|   | AURR980112  | -0.0786 | 1.2567 | 2.689E-04              | 2.120E-03 | -0.1131 | 1.1579 | 1.041E-02 | 2.890E-02 | Undefined                   | Normalized positional residue frequency at helix termini C4 (Aurora-Rose,              |
| ļ | AURR980113  | -0.0265 | 1.2533 | 7.614E-04              | 4.142E-03 | -0.0929 | 1.1895 | 7.929E-03 | 2.319E-02 | Undefined                   | Normalized positional residue frequency at helix termini C3 (Aurora-Rose,              |
|   | AURR980114  | -0.0675 | 1.0883 | 1.446E-01              | 2.228E-01 | -0.0950 | 1.0395 | 4.078E-01 | 5.088E-01 | Undefined                   | Normalized positional residue frequency at helix termini C2 (Aurora-Rose,              |
| ļ | AURR980115  | -0.1137 | 1.2970 | 6.862E-05              | 1.167E-03 | -0.1298 | 1.1277 | 5.527E-02 | 1.059E-01 | Undefined                   | Normalized positional residue frequency at helix termini C1 (Aurora-Rose,              |
|   | AURR980116  | -0.0744 | 1.1625 | 1.934E-02              | 4.497E-02 | -0.1009 | 1.0808 | 1.891E-01 | 2.743E-01 | Undefined                   | Normalized positional residue frequency at helix termini Cc (Aurora-Rose,              |
| ļ | AURR980117  | 0.0051  | 0.9380 | 5.893E-01              | 6.807E-01 | 0.0819  | 1.0814 | 2.079E-01 | 2.932E-01 | Undefined                   | Normalized positional residue frequency at helix termini C' (Aurora-Rose,              |
|   | AURR980118  | -0.0456 | 0.9646 | 8.571E-01              | 8.978E-01 | -0.0445 | 0.9368 | 5.303E-01 | 6.218E-01 | Undefined                   | Normalized positional residue frequency at helix termini C" (Aurora-Rose,              |
|   | AURR980119  | -0.1331 | 0.7982 | 3.979E-02              | 7.815E-02 | -0.1138 | 0.8174 | 5.024E-02 | 9.761E-02 | Undefined                   | Normalized positional residue frequency at helix termini C"' (Aurora-Rose,             |
| ļ | AURR980120  | -0.0693 | 0.8359 | 6.382E-02              | 1.106E-01 | -0.0306 | 0.8864 | 1.812E-01 | 2.657E-01 | Undefined                   | Normalized positional residue frequency at helix termini C4' (Aurora-Rose.             |
|   | ONEK900101  | 0.0028  | 1.0918 | 1.920E-01              | 2.793E-01 | -0.0114 | 1.0743 | 2.742E-01 | 3.714E-01 | Undefined                   | Delta G values for the peptides extrapolated to 0 M urea (O'Neil-DeGrado.              |
|   |             |         | '      |                        |           |         |        |           |           |                             | · · · · · · · · · · · · · · · · · · ·                                                  |

| ONEK900102 | -0.0147 | 1.0197 | 6.851E-01 | 7.668E-01 | -0.0231 | 0.9823 | 9.356E-01 | 9.443E-01 | Undefined | Helix formation parameters (delta delta G) (O'Neil-DeGrado, 1990)             |
|------------|---------|--------|-----------|-----------|---------|--------|-----------|-----------|-----------|-------------------------------------------------------------------------------|
| VINM940101 | -0.0873 | 0.7039 | 7.902E-05 | 1.228E-03 | -0.0630 | 0.7154 | 6.679E-05 | 8.819E-04 | Undefined | Normalized flexibility parameters (B-values), average (Vihinen et al., 1994)  |
| VINM940102 | -0.0961 | 0.6907 | 3.114E-04 | 2.289E-03 | -0.0746 | 0.7185 | 6.746E-04 | 3.563E-03 | Undefined | Normalized flexibility parameters (B-values) for each residue surrounded by   |
| VINM940103 | -0.1096 | 0.6254 | 1.151E-07 | 2.086E-05 | -0.1224 | 0.6493 | 1.784E-07 | 1.941E-05 | Undefined | Normalized flexibility parameters (B-values) for each residue surrounded by   |
| VINM940104 | -0.0538 | 0.7814 | 3.880E-03 | 1.272E-02 | -0.0459 | 0.7601 | 8.506E-04 | 4.156E-03 | Undefined | Normalized flexibility parameters (B-values) for each residue surrounded by   |
| MUNV940101 | 0.0344  | 1.0981 | 1.612E-01 | 2.436E-01 | 0.0456  | 0.9982 | 8.694E-01 | 9.026E-01 | Undefined | Free energy in alpha-helical conformation (Munoz-Serrano, 1994)               |
| MUNV940102 | 0.0438  | 1.2360 | 4.282E-03 | 1.362E-02 | 0.0756  | 1.0902 | 1.768E-01 | 2.613E-01 | Undefined | Free energy in alpha-helical region (Munoz-Serrano, 1994)                     |
| MUNV940103 | -0.0545 | 0.7058 | 1.090E-03 | 5.576E-03 | -0.0471 | 0.7168 | 1.021E-03 | 4.789E-03 | Undefined | Free energy in beta-strand conformation (Munoz-Serrano, 1994)                 |
| MUNV940104 | -0.0600 | 0.8081 | 5.342E-02 | 9.752E-02 | -0.0503 | 0.7979 | 3.258E-02 | 6.992E-02 | Undefined | Free energy in beta-strand region (Munoz-Serrano, 1994)                       |
| MUNV940105 | -0.0585 | 0.8419 | 1.183E-01 | 1.882E-01 | -0.0332 | 0.8646 | 1.669E-01 | 2.502E-01 | Undefined | Free energy in beta-strand region (Munoz-Serrano, 1994)                       |
| WIMW960101 | 0.0806  | 0.8949 | 2.528E-01 | 3.508E-01 | 0.0802  | 0.8116 | 1.943E-02 | 4.657E-02 | Undefined | Free energies of transfer of AcWI-X-LL peptides from bilayer interface to     |
| KIMC930101 | -0.0475 | 0.7899 | 2.260E-02 | 5.079E-02 | 0.0065  | 0.8334 | 6.470E-02 | 1.199E-01 | Undefined | Thermodynamic beta sheet propensity (Kim-Berg, 1993)                          |
| MONM990101 | -0.0732 | 0.8686 | 1.645E-01 | 2.467E-01 | -0.0113 | 0.7592 | 3.676E-03 | 1.290E-02 | Undefined | Turn propensity scale for transmembrane helices (Monne et al., 1999)          |
| BLAM930101 | 0.0276  | 1.0065 | 7.784E-01 | 8.435E-01 | 0.0166  | 0.9570 | 7.119E-01 | 7.793E-01 | Undefined | Alpha helix propensity of position 44 in T4 lysozyme (Blaber et al., 1993)    |
| PARS000101 | -0.0792 | 0.6918 | 2.262E-04 | 1.953E-03 | -0.0316 | 0.6744 | 4.067E-05 | 6.914E-04 | Undefined | p-Values of mesophilic proteins based on the distributions of B values        |
| PARS000102 | -0.0973 | 0.8706 | 1.967E-01 | 2.838E-01 | -0.0973 | 0.7814 | 1.488E-02 | 3.799E-02 | Undefined | p-Values of thermophilic proteins based on the distributions of B values      |
| KUMS000101 | -0.0118 | 1.1451 | 3.401E-02 | 6.955E-02 | -0.0228 | 1.1889 | 4.885E-03 | 1.572E-02 | Undefined | Distribution of amino acid residues in the 18 non-redundant families of       |
| KUMS000102 | 0.0000  | 1.1472 | 2.122E-02 | 4.810E-02 | -0.0338 | 1.2321 | 2.237E-04 | 1.739E-03 | Undefined | Distribution of amino acid residues in the 18 non-redundant families of       |
| KUMS000103 | -0.0709 | 1.3547 | 3.849E-07 | 4.188E-05 | -0.1227 | 1.3235 | 1.127E-06 | 6.132E-05 | Undefined | Distribution of amino acid residues in the alpha-helices in thermophilic      |
| KUMS000104 | -0.0418 | 1.3516 | 8.822E-07 | 7.998E-05 | -0.1279 | 1.2912 | 1.425E-05 | 3.523E-04 | Undefined | Distribution of amino acid residues in the alpha-helices in mesophilic        |
| TAKK010101 | 0.0236  | 0.8217 | 2.736E-02 | 5.861E-02 | -0.0211 | 0.8568 | 6.307E-02 | 1.179E-01 | Undefined | Side-chain contribution to protein stability (kJ/mol) (Takano-Yutani, 2001)   |
| FODM020101 | 0.0902  | 0.7153 | 2.100E-03 | 8.420E-03 | 0.0805  | 0.7154 | 1.329E-03 | 5.784E-03 | Undefined | Propensity of amino acids within pi-helices (Fodje-Al-Karadaghi, 2002)        |
| NADH010101 | 0.0850  | 0.7551 | 2.578E-03 | 9.740E-03 | 0.0758  | 0.7368 | 6.084E-04 | 3.472E-03 | Undefined | Hydropathy scale based on self-information values in the two-state model (5%  |
| NADH010102 | 0.0658  | 0.7121 | 4.806E-04 | 3.005E-03 | 0.0478  | 0.6915 | 7.332E-05 | 8.864E-04 | Undefined | Hydropathy scale based on self-information values in the two-state model (9%  |
| NADH010103 | 0.0927  | 0.6822 | 1.255E-04 | 1.533E-03 | 0.0831  | 0.6515 | 1.192E-05 | 3.241E-04 | Undefined | Hydropathy scale based on self-information values in the two-state model (16% |
| NADH010104 | 0.0925  | 0.6378 | 7.376E-06 | 3.087E-04 | 0.0870  | 0.6344 | 1.955E-06 | 8.862E-05 | Undefined | Hydropathy scale based on self-information values in the two-state model (20% |
| NADH010105 | 0.0959  | 0.6712 | 6.128E-05 | 1.111E-03 | 0.0920  | 0.6780 | 3.768E-05 | 6.612E-04 | Undefined | Hydropathy scale based on self-information values in the two-state model (25% |
| NADH010106 | 0.1409  | 0.6490 | 2.140E-04 | 1.905E-03 | 0.1340  | 0.7071 | 1.233E-03 | 5.435E-03 | Undefined | Hydropathy scale based on self-information values in the two-state model (36% |
| NADH010107 | 0.1711  | 0.8796 | 2.214E-01 | 3.103E-01 | 0.1814  | 0.8960 | 2.783E-01 | 3.740E-01 | Undefined | Hydropathy scale based on self-information values in the two-state model (50% |
| MONM990201 | 0.0323  | 0.9153 | 3.720E-01 | 4.673E-01 | 0.0620  | 0.9021 | 2.706E-01 | 3.704E-01 | Undefined | Averaged turn propensities in a transmembrane helix (Monne et al., 1999)      |
| KOEP990101 | 0.1415  | 1.1411 | 3.822E-02 | 7.588E-02 | 0.1797  | 1.1244 | 4.631E-02 | 9.128E-02 | Undefined | Alpha-helix propensity derived from designed sequences (Koehl-Levitt, 1999)   |
| KOEP990102 | -0.1055 | 0.7301 | 2.304E-04 | 1.958E-03 | -0.1044 | 0.7654 | 8.233E-04 | 4.104E-03 | Undefined | Beta-sheet propensity derived from designed sequences (Koehl-Levitt, 1999)    |
| CEDJ970101 | -0.0624 | 1.1767 | 5.454E-03 | 1.630E-02 | -0.0782 | 1.1530 | 1.081E-02 | 2.962E-02 | Undefined | Composition of amino acids in extracellular proteins (percent) (Cedano et     |
| CEDJ970102 | -0.1082 | 1.2668 | 4.062E-05 | 7.893E-04 | -0.1081 | 1.2468 | 7.305E-05 | 8.864E-04 | Undefined | Composition of amino acids in anchored proteins (percent) (Cedano et al.,     |
| CEDJ970103 | -0.0718 | 1.2686 | 2.413E-04 | 2.020E-03 | -0.0806 | 1.2562 | 1.767E-04 | 1.457E-03 | Undefined | Composition of amino acids in membrane proteins (percent) (Cedano et al.,     |
| CEDJ970104 | -0.1194 | 1.2317 | 1.050E-03 | 5.438E-03 | -0.1188 | 1.2454 | 3.323E-04 | 2.260E-03 | Undefined | Composition of amino acids in intracellular proteins (percent) (Cedano et     |
| CEDJ970105 | -0.2147 | 0.9067 | 2.905E-01 | 3.877E-01 | -0.1825 | 1.0178 | 7.006E-01 | 7.731E-01 | Undefined | Composition of amino acids in nuclear proteins (percent) (Cedano et al.,      |
| FUKS010101 | -0.1139 | 0.8166 | 4.445E-02 | 8.581E-02 | -0.0747 | 0.8173 | 3.544E-02 | 7.387E-02 | Undefined | Surface composition of amino acids in intracellular proteins of thermophiles  |
| FUKS010102 | -0.1071 | 0.8970 | 3.426E-01 | 4.365E-01 | -0.0906 | 0.8485 | 1.163E-01 | 1.924E-01 | Undefined | Surface composition of amino acids in intracellular proteins of mesophiles    |
| FUKS010103 | -0.0376 | 0.7323 | 6.273E-04 | 3.630E-03 | -0.0341 | 0.8091 | 1.250E-02 | 3.300E-02 | Undefined | Surface composition of amino acids in extracellular proteins of mesophiles    |
| FUKS010104 | -0.1209 | 0.7885 | 3.505E-02 | 7.062E-02 | -0.1036 | 0.7575 | 9.278E-03 | 2.629E-02 | Undefined | Surface composition of amino acids in nuclear proteins (percent)              |
| FUKS010105 | -0.0121 | 1.1811 | 9.124E-03 | 2.364E-02 | -0.0546 | 1.1837 | 5.561E-03 | 1.739E-02 | Undefined | Interior composition of amino acids in intracellular proteins of thermophiles |
| FUKS010106 | -0.0208 | 1.1930 | 3.210E-03 | 1.098E-02 | -0.0698 | 1.1978 | 1.681E-03 | 6.981E-03 | Undefined | Interior composition of amino acids in intracellular proteins of mesophiles   |
| FUKS010107 | 0.0026  | 1.1219 | 6.242E-02 | 1.085E-01 | -0.0329 | 1.1362 | 3.255E-02 | 6.992E-02 | Undefined | Interior composition of amino acids in extracellular proteins of mesophiles   |
| FUKS010108 | -0.0623 | 1.1583 | 2.582E-02 | 5.618E-02 | -0.1007 | 1.0948 | 1.331E-01 | 2.123E-01 | Undefined | Interior composition of amino acids in nuclear proteins (percent)             |
| FUKS010109 | -0.0888 | 1.1564 | 7.769E-03 | 2.121E-02 | -0.1156 | 1.1974 | 6.454E-04 | 3.521E-03 | Undefined | Entire chain composition of amino acids in intracellular proteins of          |
| FUKS010110 | -0.0903 | 1.3326 | 3.425E-07 | 4.188E-05 | -0.1105 | 1.3625 | 8.100E-09 | 2.203E-06 | Undefined | Entire chain composition of amino acids in intracellular proteins of          |
| FUKS010111 | 0.0056  | 1.0217 | 6.808E-01 | 7.637E-01 | -0.0458 | 1.0647 | 2.957E-01 | 3.923E-01 | Undefined | Entire chain composition of amino acids in extracellular proteins of          |
| FUKS010112 | -0.0953 | 1.2614 | 1.960E-04 | 1.858E-03 | -0.1477 | 1.2650 | 1.003E-04 | 1.070E-03 | Undefined | Entire chain compositino of amino acids in nuclear proteins (percent)         |
| AVBF000101 | 0.0275  | 0.7795 | 1.622E-02 | 3.922E-02 | 0.0200  | 0.8340 | 6.345E-02 | 1.182E-01 | Undefined | Screening coefficients gamma, local (Avbelj, 2000)                            |
| AVBF000102 | 0.0173  | 0.9365 | 5.567E-01 | 6.485E-01 | -0.0360 | 0.9168 | 3.811E-01 | 4.846E-01 | Undefined | Screening coefficients gamma, non-local (Avbelj, 2000)                        |
| AVBF000103 | 0.0421  | 1.1025 | 1.370E-01 | 2.117E-01 | -0.0038 | 0.9827 | 9.486E-01 | 9.556E-01 | Undefined | Slopes tripeptide, FDPB VFF neutral (Avbelj, 2000)                            |
| AVBF000104 | -0.0319 | 1.0779 | 3.125E-01 | 4.086E-01 | -0.0346 | 0.9828 | 9.085E-01 | 9.272E-01 | Undefined | Slopes tripeptides, LD VFF neutral (Avbelj, 2000)                             |
|            |         |        |           |           |         |        |           |           |           |                                                                               |

| AVBF000105  | 0.0640  | 1.0356 | 5.315E-01 | 6.285E-01 | -0.0052 | 0.9484 | 5.827E-01 | 6.688E-01 Undefined | Slopes tripeptide, FDPB VFF noside (Avbelj, 2000)                               |
|-------------|---------|--------|-----------|-----------|---------|--------|-----------|---------------------|---------------------------------------------------------------------------------|
| AVBF000106  | 0.0747  | 0.9017 | 2.992E-01 | 3.950E-01 | 0.0389  | 0.8835 | 1.750E-01 | 2.594E-01 Undefined | Slopes tripeptide FDPB VFF all (Avbelj, 2000)                                   |
| AVBF000107  | -0.0325 | 1.0041 | 8.143E-01 | 8.652E-01 | -0.0256 | 0.9778 | 8.587E-01 | 8.932E-01 Undefined | Slopes tripeptide FDPB PARSE neutral (Avbeli, 2000)                             |
| AVBF000108  | -0.0087 | 0.9800 | 9.901E-01 | 9.901E-01 | -0.0462 | 0.9003 | 3.207E-01 | 4.183E-01 Undefined | Slopes dekapeptide, FDPB VFF neutral (Avbelj, 2000)                             |
| AVBF000109  | -0.0550 | 0.8982 | 2.297E-01 | 3.204E-01 | -0.0915 | 0.8886 | 1.667E-01 | 2.502E-01 Undefined | Slopes proteins, FDPB VFF neutral (Avbeli, 2000)                                |
| YANJ020101  | 0.0264  | 0.9301 | 4.887E-01 | 5.907E-01 | 0.0457  | 0.9498 | 6.098E-01 | 6.868E-01 Undefined | Side-chain conformation by gaussian evolutionary method (Yang et al., 2002)     |
| MITS020101  | 0.0647  | 0.9206 | 3.603E-01 | 4.548E-01 | 0.0825  | 0.9408 | 5.263E-01 | 6.184E-01 Undefined | Amphiphilicity index (Mitaku et al., 2002)                                      |
| TSAJ990101  | -0.0349 | 0.8604 | 5.211E-02 | 9.576E-02 | -0.0377 | 0.8922 | 1.198E-01 | 1.956E-01 Undefined | Volumes including the crystallographic waters using the ProtOr (Tsai et al.,    |
| TSAJ990102  | -0.0315 | 0.8464 | 2.927E-02 | 6.171E-02 | -0.0344 | 0.8986 | 1.389E-01 | 2.196E-01 Undefined | Volumes not including the crystallographic waters using the ProtOr (Tsai et     |
| COSI940101  | 0.0276  | 0.9776 | 8.676E-01 | 9.024E-01 | 0.0321  | 1.0459 | 4.305E-01 | 5.311E-01 Undefined | Electron-ion interaction potential values (Cosic, 1994)                         |
| PONP930101  | 0.0310  | 0.7041 | 1.393E-04 | 1.579E-03 | 0.0274  | 0.6801 | 1.344E-05 | 3.483E-04 Undefined | Hydrophobicity scales (Ponnuswamy, 1993)                                        |
| WILM950101  | 0.0289  | 0.8154 | 2.774E-02 | 5.895E-02 | 0.0078  | 0.8107 | 1.742E-02 | 4.248E-02 Undefined | Hydrophobicity coefficient in RP-HPLC. C18 with 0.1%TFA/MeCN/H2O (Wilce et      |
| WILM950102  | 0.0185  | 0.8077 | 2.455E-02 | 5.407E-02 | -0.0126 | 0.8685 | 1.177E-01 | 1.934E-01 Undefined | Hydrophobicity coefficient in RP-HPLC. C8 with 0.1%TFA/MeCN/H2O (Wilce et al.   |
| WILM950103  | 0.0827  | 1 2308 | 1 734F-03 | 7 369E-03 | 0.0590  | 1 2190 | 1 855E-03 | 7 356E-03 Undefined | Hydronhobicity coefficient in RP-HPLC_C4 with 0 1%TEA/MeCN/H2O (Wilce et al     |
| WILM950104  | 0.0000  | 1 0103 | 7 357E-01 | 8 087E-01 | 0.0017  | 1 0113 | 7 342F-01 | 8 004E-01 Undefined | Hydrophobicity coefficient in RP-HPLC C18 with 0.1%TEA/2-PrOH/MeCN/H2O          |
| KUHI 950101 | -0 0774 | 0.8714 | 1 752F-01 | 2 582E-01 | -0.0471 | 0 7277 | 1.062E-03 | 4 853E-03 Undefined | Hydrophilicity scale (Kuhn et al. 1995)                                         |
| GUOD860101  | 0.0184  | 0.7997 | 1.646E-02 | 3 945E-02 | -0.0166 | 0.7884 | 7 338F-03 | 2 199E-02 Undefined | Retention coefficient at nH 2 (Guo et al. 1986)                                 |
| UIRD980101  | 0.0564  | 0.8506 | 5 603E-02 | 9 999F-02 | 0.0329  | 0.7422 | 4 532E-04 | 2 935E-03 Undefined | Modified Kyte-Doolittle bydronbobicity scale (Juretic et al. 1998)              |
| BASU050101  | 0.0304  | 0.8300 | 2 744E-02 | 9.999L-02 | 0.0323  | 0.7422 | 4.3322-04 | 7 020E-04 Undefined | Interactivity scale obtained from the contact matrix (Pastolla et al., 2005)    |
| BASU050101  | 0.0528  | 0.6736 | 2.744E 03 | 2 260E-03 | 0.0275  | 0.6511 | 4.490E 05 | 7 020E-04 Undefined | Interactivity scale obtained hy maximizing the mean of correlation              |
| BASU050102  | 0.0320  | 0.0730 | 0.033E 04 | 1 224E-02 | 0.0674  | 0.6734 | 6 201E-06 | 2 045E-04 Undefined | Interactivity scale obtained by maximizing the mean of correlation              |
| SUVM020101  | 0.1069  | 0.7021 | 1.046E-01 | 1.5246-05 | 0.0024  | 0.0734 | 7 5595-02 | 1 252E-01 Undefined | Linker propensity index (Suyama-Obara, 2002)                                    |
| DUNT020101  | -0.0248 | 0.8493 | 5.462E-01 | 0.820E-02 | -0.0022 | 0.8423 | 1.539E-02 | 4 102E-02 Undefined | Knowledge-based membrane-propensity scale from 1D. Helix in MDtono databases    |
| PUNT030101  | -0.0248 | 0.8285 | 5.4022-02 | 1.614E 02 | -0.0022 | 0.8024 | 1.043L-02 | 4.1022-02 Undefined | Knowledge-based membrane-propensity scale from 2D_Helix in MPtopo databases     |
| CEOP020102  | -0.0428 | 1.0240 | 5.304E-03 | 1.014E-02 | -0.0005 | 1.0260 | 4 5925 01 | 5.472E-05 Ondefined | Linker proponsity from all dataset (Goorge Herings, 2002)                       |
| GEOR030101  | -0.1037 | 1.0249 | 2 2045 01 | 4 2505-01 | -0.1210 | 0.0722 | 4.362E-01 | 0.2555.01 Undefined | Linker propensity from 1 linker dataset (George Heringa, 2003)                  |
| GEOR030102  | -0.0937 | 0.9043 | 0 5015 01 | 4.2300-01 | -0.1109 | 1.0060 | 9.2171-01 | 8 670E 01 Undefined | Linker propensity from 2-linker dataset (George-Heringa, 2003)                  |
| GEOR030103  | -0.0674 | 1 2022 | 9.301E-01 | 1 E22E 02 | -0.1492 | 1.0000 | 0.200E-01 | 4 9525 02 Undefined | Linker propensity from 2 linker dataset (George Heringa, 2003)                  |
| GEOR030104  | -0.0985 | 0.8144 | 5 772E-02 | 1.016E-01 | -0.1349 | 0.8613 | 1.0392-03 | 2 289E-01 Undefined | Linker propensity from small dataset (linker length is less than six            |
| GEOR030105  | 0.0034  | 1 1624 | 2 4205 02 | E 204E 02 | 0.0984  | 1 1476 | 2 6065 02 | 6 060E 02 Undefined | Linker propensity from medium dataset (linker length is between six and 14      |
| GEOR030108  | -0.1095 | 0 0007 | 2.439E-02 | 3.394E-02 | -0.1505 | 0.8840 | 2.090E-02 | 2 076E 01 Undefined | Linker propensity from long dataset (linker length is between six and 14        |
| GEOR030107  | -0.0449 | 0.8887 | 1.075E-01 | 2.469E-01 | -0.0459 | 0.8849 | 2.0085.02 | 2.076E-01 Undefined | Linker propensity from holical (appetated by DCCD) dataset (Coorda Havinga      |
| GEOR030108  | -0.0761 | 1.2830 | 2.569E-04 | 2.055E-03 | -0.1529 | 1.2151 | 2.998E-03 | 1.094E-02 Undefined | Linker propensity from nen beliegt (annotated by DSSP) dataset (George-Herniga, |
| GEOR030109  | -0.0381 | 0.9946 | 9.046E-01 | 9.290E-01 | -0.0414 | 0.9116 | 3.813E-01 | 4.846E-01 Undefined | Linker propensity from non-nencal (annotated by DSSP) dataset                   |
| 2HOH040101  | 0.0688  | 0.7440 | 7.819E-03 | 2.121E-02 | 0.0603  | 0.6919 | 7.257E-04 | 3.796E-03 Undefined | The stability scale from the knowledge-based atom-atom potential (2nou-2nou,    |
| 2HOH040102  | 0.0193  | 0.7078 | 0.533E-03 | 1.8/12-02 | 0.0023  | 0.7252 | 7.484E-04 | 5.805E-03 Undefined | The relative stability scale extracted from mutation experiments (2000-2000,    |
| 2H0H040103  | 0.0914  | 0.6703 | 8.260E-05 | 1.246E-03 | 0.0652  | 0.6600 | 2.535E-05 | 1 7045 02 Undefined | Burlability (2000-2000, 2004)                                                   |
| BAEK050101  | 0.1005  | 0.6884 | 3.268E-04 | 2.297E-03 | 0.0913  | 0.6929 | 2.361E-04 | 1.784E-03 Undefined | Linker index (Bae et al., 2005)                                                 |
| HAR1940101  | -0.0042 | 0.7457 | 3.796E-04 | 2.594E-03 | -0.0057 | 0.8453 | 2.576E-02 | 5.864E-02 Undefined | Mean volumes of residues buried in protein interiors (Harpaz et al., 1994)      |
| PONJ960101  | 0.0063  | 0.7934 | 7.410E-03 | 2.073E-02 | -0.0063 | 0.8427 | 3.644E-02 | 7.556E-02 Undefined | Average volumes of residues (Pontius et al., 1996)                              |
| DIGM050101  | -0.1699 | 1.0005 | 7.814E-01 | 8.435E-01 | -0.1134 | 1.0161 | 6.442E-01 | 7.211E-01 Undefined | Hydrostatic pressure asymmetry index, PAI (DI Giulio, 2005)                     |
| WOLR/90101  | 0.0311  | 0.8416 | 4.836E-02 | 9.148E-02 | 0.0031  | 0.8380 | 3.054E-02 | 6.671E-02 Undefined | Hydrophobicity index (Wolfenden et al., 1979)                                   |
| OLSK800101  | 0.0480  | 0.8152 | 1.315E-02 | 3.228E-02 | 0.0189  | 0.8084 | 6./23E-03 | 2.066E-02 Undefined | Average internal preferences (Olsen, 1980)                                      |
| KIDA850101  | -0.0511 | 0.8144 | 3.444E-02 | 7.016E-02 | -0.0309 | 0.8056 | 1.866E-02 | 4.500E-02 Undefined | Hydrophobicity-related index (Kidera et al., 1985)                              |
| GUYH850102  | -0.0522 | 0.7115 | 3.227E-04 | 2.297E-03 | -0.0429 | 0.7109 | 1.661E-04 | 1.412E-03 Undefined | Apparent partition energies calculated from Wertz-Scheraga index (Guy, 1985)    |
| GUYH850103  | -0.0580 | 0.7308 | 1.556E-03 | 6.926E-03 | -0.0542 | 0.6994 | 1.455E-04 | 1.297E-03 Undefined | Apparent partition energies calculated from Robson-Osguthorpe index (Guy,       |
| GUYH850104  | -0.0635 | 0.7226 | 1.346E-03 | 6.365E-03 | -0.0377 | 0.7221 | 8.109E-04 | 4.085E-03 Undefined | Apparent partition energies calculated from Janin index (Guy, 1985)             |
| GUYH850105  | -0.0983 | 0.7607 | 3.862E-03 | 1.272E-02 | -0.0521 | 0.7758 | 4.220E-03 | 1.400E-02 Undefined | Apparent partition energies calculated from Chothia index (Guy, 1985)           |
| ROSM880104  | 0.0234  | 0.8166 | 1.023E-02 | 2.592E-02 | -0.0001 | 0.8179 | 7.312E-03 | 2.199E-02 Undefined | Hydropathies of amino acid side chains, neutral form (Roseman, 1988)            |
| ROSM880105  | 0.0547  | 0.8136 | 5.106E-02 | 9.416E-02 | 0.0122  | 0.7809 | 1.189E-02 | 3.186E-02 Undefined | Hydropathies of amino acid side chains, pi-values in pH 7.0 (Roseman, 1988)     |
| JACR890101  | 0.0973  | 0.8357 | 8.161E-02 | 1.375E-01 | 0.0598  | 0.7570 | 4.988E-03 | 1.578E-02 Undefined | Weights from the IFH scale (Jacobs-White, 1989)                                 |
| COWR900101  | 0.0125  | 0.7230 | 5.489E-04 | 3.355E-03 | -0.0127 | 0.7083 | 1.310E-04 | 1.271E-03 Undefined | Hydrophobicity index, 3.0 pH (Cowan-Whittaker, 1990)                            |
| BLAS910101  | 0.0605  | 0.8588 | 1.351E-01 | 2.107E-01 | 0.0355  | 0.7533 | 4.028E-03 | 1.361E-02 Undefined | Scaled side chain hydrophobicity values (Black-Mould, 1991)                     |
| CASG920101  | 0.0906  | 0.6838 | 4.257E-04 | 2.724E-03 | 0.0940  | 0.6691 | 1.098E-04 | 1.127E-03 Undefined | Hydrophobicity scale from native protein structures (Casari-Sippl, 1992)        |

| CORJ870101 | 0.0820  | 0.7222 | 3.294E-04 | 2.297E-03 | 0.0842  | 0.6602 | 3.694E-06 | 1.256E-04 Undefined | NNEIG index (Cornette et al., 1987)                                        |
|------------|---------|--------|-----------|-----------|---------|--------|-----------|---------------------|----------------------------------------------------------------------------|
| CORJ870102 | 0.0444  | 0.8343 | 4.007E-02 | 7.842E-02 | 0.0435  | 0.7494 | 8.298E-04 | 4.104E-03 Undefined | SWEIG index (Cornette et al., 1987)                                        |
| CORJ870103 | 0.0186  | 0.7507 | 2.256E-03 | 8.831E-03 | 0.0221  | 0.7285 | 5.255E-04 | 3.249E-03 Undefined | PRIFT index (Cornette et al., 1987)                                        |
| CORJ870104 | 0.0299  | 0.7458 | 4.169E-03 | 1.337E-02 | 0.0210  | 0.7344 | 1.869E-03 | 7.356E-03 Undefined | PRILS index (Cornette et al., 1987)                                        |
| CORJ870105 | 0.0226  | 0.7521 | 3.156E-03 | 1.087E-02 | -0.0218 | 0.7553 | 2.410E-03 | 9.169E-03 Undefined | ALTFT index (Cornette et al., 1987)                                        |
| CORJ870106 | 0.0274  | 0.7224 | 2.888E-03 | 1.022E-02 | -0.0062 | 0.7214 | 1.646E-03 | 6.940E-03 Undefined | ALTLS index (Cornette et al., 1987)                                        |
| CORJ870107 | 0.0294  | 0.7247 | 6.975E-04 | 3.872E-03 | -0.0060 | 0.7058 | 1.357E-04 | 1.271E-03 Undefined | TOTFT index (Cornette et al., 1987)                                        |
| CORJ870108 | -0.0219 | 0.7478 | 3.756E-03 | 1.246E-02 | 0.0018  | 0.6953 | 2.188E-04 | 1.725E-03 Undefined | TOTLS index (Cornette et al., 1987)                                        |
| MIYS990101 | -0.0361 | 0.7393 | 1.627E-03 | 7.026E-03 | -0.0147 | 0.7267 | 5.453E-04 | 3.284E-03 Undefined | Relative partition energies derived by the Bethe approximation             |
| MIYS990102 | -0.0390 | 0.7302 | 1.228E-03 | 5.912E-03 | -0.0170 | 0.7149 | 3.496E-04 | 2.348E-03 Undefined | Optimized relative partition energies - method A (Miyazawa-Jernigan, 1999) |
| MIYS990103 | -0.0542 | 0.6859 | 1.793E-04 | 1.774E-03 | -0.0381 | 0.6483 | 1.095E-05 | 3.134E-04 Undefined | Optimized relative partition energies - method B (Miyazawa-Jernigan, 1999) |
| MIYS990104 | -0.0791 | 0.6825 | 8.727E-05 | 1.246E-03 | -0.0545 | 0.6527 | 7.082E-06 | 2.140E-04 Undefined | Optimized relative partition energies - method C (Miyazawa-Jernigan, 1999) |
| MIYS990105 | -0.0573 | 0.7026 | 2.108E-04 | 1.905E-03 | -0.0518 | 0.7013 | 9.180E-05 | 9.988E-04 Undefined | Optimized relative partition energies - method D (Miyazawa-Jernigan, 1999) |
| ENGD860101 | -0.0856 | 0.8163 | 5.417E-02 | 9.829E-02 | -0.0019 | 0.7629 | 7.696E-03 | 2.288E-02 Undefined | Hydrophobicity index (Engelman et al., 1986)                               |
| FASG890101 | -0.0808 | 0.7064 | 1.324E-04 | 1.533E-03 | -0.0790 | 0.6921 | 3.075E-05 | 5.768E-04 Undefined | Hydrophobicity index (Fasman, 1989)                                        |