Supporting Information (SI) on

Efficient removal of Pb²⁺ by Tb-MOFs: Identifying the adsorption mechanism through experimental and theoretical investigations

Hongshan Zhu^{a,b}, Jinyun Yuan^c, Xiaoli Tan^{a,b*}, Wenhua Zhang^c, Ming Fang^{a*},

Xiangke Wang^a

^a The MOE Key Laboratory of Resource and Environmental System Optimization, School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P.R. China

^b Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China

^c University of Science and Technology of China, Hefei, Anhui 230026, P.R. China

*Corresponding author. E-mail: tanxl@ipp.ac.cn, xltan@ncepu.edu.cn (X. Tan);

mfang@ncepu.edu.cn (M. Fang); zhuhongshan199322@163.com (H. Zhu);

149593854@qq.com (J. Yuan); whhzhang@ustc.edu.cn (W. Zhang);

xkwang@ncepu.edu.cn (X. Wang).

Hongshan Zhu and Jinyun Yuan contributed equally.

Supplemental Information, 6 pages, 4 figures and 4 tables.

Figure S1. The structure of H₃TATAB.

Figure S2. EDS spectrum for Tb-MOFs.

Figure S3. The distribution of Pb²⁺ species in aqueous solutions.

Figure S4. TEM images of Tb-MOFs after fifth cycle of regeneration (a-d).

Equations						
Pseudo	o second order		Intrapa	rticle diffusio	n	
$\frac{t}{C_{t}} =$	$=\frac{1}{k_2C_{\rm e}^2}+\frac{t}{C_{\rm e}}$	$C_{\rm t} = k_{\rm id} t^{\frac{1}{2}} + A$				
k_2 (g/(mg·min))	$C_{\rm e}({\rm mg/g})$	R^2	$k_{id}(g/(mg \cdot min))$	A(mg/g)	R^{2}_{id}	
0.002 380		0.999	the first stage			
	380 0.999		100	7.69	0.999	
			the second stage			
			12.93	266	0.980	
			the third stage			
			4.30	312	0.997	
			the fourth stage			
			0	343	1	

 Table S1 Parameters obtained from different kinetic model.

 k_2 , k_{id} , and A represent the kinetic constants. C_e and C_t are the mass of Pb²⁺ adsorbed on Tb-MOFs at equilibrium and at time.

Table S2 Thermodynamic parameters for Pb ²⁺ removal onto Tb-MO
--

<i>T</i> (K)	ΔG^0 (kJ/mol)	$\Delta S^0 \left(J/(\text{mol}\cdot \mathbf{K}) \right)$	ΔH^0 (kJ/mol)
298	-22.76		
308	-24.33	157.32	24.12
318	-25.91		

			y — -			
Number of cycles	0	1	2	3	4	5
[Tb] (µg/mL)	0.095	0.088	0.075	0.083	0.077	0.072
$\omega([Tb(g)]/[MOFs(g)])$	0.63 ‰	0.59 ‰	0.50 ‰	0.55 ‰	0.51 ‰	0.48 ‰
ω([Tb(g)]/[Tb in MOFs (g)])	2.5 ‰	2.4 ‰	2.0 ‰	2.2 ‰	2.1 ‰	1.9 ‰

Table S3 The concentration of Tb in solution after adsorption in regeneration cycles.

pH = 5.5, m/V = 0.15 g/L.

[Tb] is the concentration of Tb released in solution; $\omega([Tb]/[MOFs])$ is the weight ratio of released Tb and Tb-MOFs in solution; $\omega([Tb]/[Tb in MOFs])$ is the weight ratio of released Tb and the total Tb of Tb-MOFs in solution.

calculations				
Binding mode	$E_{\rm b}({\rm eV})$	Binding distance (Å)	Description	
[Single-Tb-MOFsPb] ²⁺	5.99	2.36/2.24 (Pb-N1/N2)	Single ligand binding with Pb ²⁺	
[Single(-H)-Tb-MOFsPb] ⁺	20.66	2.12/2.29 (Pb-N1/N2)	Single ligand binding (N1 removed a proton) with Pb ²⁺	
[Double-Tb-MOFsPb] ²⁺	7.78	2.44/2.53/2.54/2.71 (Pb-N1/N2/N3/N4)	Double ligands binding with Pb ²⁺	
[Double(-H)-Tb-MOFsPb] ⁺	14.95	2.25/2.31 (Pb-N3/N4)	Double ligands binding (N3 removed a proton)	
[Double(-2H)-Tb-MOFsPb]	20.78	2.27/2.26/2.36 (Pb-N1/N3/N4)	Double ligands binding (N1 and N3 removed two protons)	

Table S4 The calculated binding energies (E_b) between Pb²⁺ and Tb-MOFs by DFT

S6