Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2019

SUPPLEMENTARY INFORMATION

The First Comprehensive Safety Study of Magnéli Phase Titanium Suboxides Reveals No Acute Environmental Hazard

Anita Jemec Kokalj^{1,*}, Sara Novak¹, Iva Talaber¹, Veno Kononenko¹, Lilijana Bizjak Mali¹, Maša Vodovnik¹, Bojana Žegura², Tina Eleršek², Gabriela Kaličikova³, Andreja Žgajnar Gotvajn³, Slavko Kralj⁴, Darko Makovec⁴, Hana Čaloudova⁵, Damjana Drobne^{1,*}

¹University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

²National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia

³University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia

⁴Institut "Jožef Stefan", Jamova cesta 39, 1000 Ljubljana, Slovenia

⁵University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Palackého třída 1946/1,612 42 Brno, Czech republic

*Corresponding authors: Anita Jemec Kokalj; anita.jemec@bf.uni-lj.si and Damjana Drobne, Damjana.drobne@bf.uni-lj.si

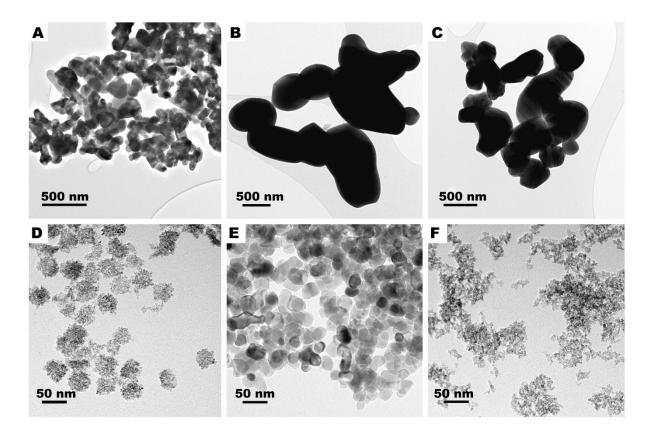


Fig. S1 Transmission electron microscopy images of titanium oxide particles. Micrographs of (A) Magnéli TiO_x -A (B) Magnéli TiO_x -B (C) Magnéli TiO_x -C (D) TiO_2 -A (E) TiO_2 -B (F) TiO_2 -C. Note that the scale bars are different.

TABLE S1: Characteristics of ${\rm TiO_2}\,$ and Magnéli TiOx particles in different test media.

	TiO ₂ -A	TiO ₂ -B	TiO ₂ -C	Magnéli TiO _x -A	Magnéli TiO _x -B A	Magnéli TiO _x -C			
	Medium for Pseudokirchneriella subcapitata								
Size (DLS) [nm]	11 and 113	94 and 596	786	82 and 451	824	654			
pdi	0.107	0.220	0.603	0.178	0.211	0.045			
ζ [mV]	-22.1±3.4	-24.8±1.0	-19.2±2.5	-21.1±1.8	-32.3±2.2	-28.3±1.9			
	Medium for <i>Lemna minor</i>								
Size (DLS) [nm]	863	1248	903	1369	751	823			
pdi	NA	0.252	NA	0.002	0.586	0.67			
ζ [mV]	-15.9±1.3	-17.5±0.9	-16.5±0.9	-19.7±0.6	-39.4±1.7	-23.1±0.9			
	Medium for <i>Artemia franciscana</i>								
Size (DLS) [nm]	863	1434	1248	1138	1369	1192			
pdi	NA	0.468	NA	0.1336	0.679	0.216			
ζ [mV]	-11.7±2.8	0.0±4.5	15.7±2.0	-1.4±7.7	-1.2±5.6	2.6±6.1			
	Medium for <i>Daphnia magna</i>								
Size (DLS)	946	1573	1138	1647	68and 1138	1249			
pdi	0.608	0.127	0.734	NA	0.087	0.217			
ζ [mV]	-13.9±0.7	-4.3±0.6	-2.6±1.0	-5.3±0.9	-27.9±0.9	-17.3±0.8			
		Medi	um for <i>Tetrahyr</i>	nena thermo	phila				
Size (DLS) [nm]	32 and 862	903	653	862	1370	1138			
pdi	0.033	NA	NA	0.263	0.160	0.089			
ζ [mV]	-19.9±2.0	-21.7±2.2	-18.0±1.9	-15.3±1.5	-13.3±2.3	-15.6±1.7			
	Medium for <i>Danio rerio</i>								
Size (DLS) [nm]	1370	1982	1138	1249	824	1087			
pdi	0.749	0.054	0.754	NA	0.470	NA			
ζ [mV]	-14.6±0.6	-2.7±3.5	-10.9±1.8	-2.5±1.8	-15.6±1.8	-9.7±2.0			
		Medium for HepG2 cells							
Size (DLS) [nm]	54 and 543	43 and 654	103 and 543	69 and 903	78 and 751	142 and 786			
pdi	0.080	0.046	0.156	0.151	0.267	0.202			
ζ	-21.1±5.7	-0.5±3.7	-7.9±2.8	-5.9±9.4	-3.7±16.1	-5.7±13.5			

[mV]								
	Medium for A549 cells							
Size (DLS)	130 and	136 and	68	90 and	124 and	49 and		
[nm]	624	824		946	1087	1248		
pdi	0.140	0.228	NA	0.219	0.272	0.030		
ζ [mV]	-20.9±3.7	-0.5±7.5	-7.5±7.3	-20.8±4.2	2.2±5.9	-23.1±4.6		

^{*} NA = data not available by DLS

Chapter S1: Additional data regarding the methods for toxicity testing

Human cell lines A549 and HepG2

The cytotoxicity of Magnéli TiO_x and TiO₂ particles was evaluated using two different human cell lines (A549 and HepG2) with two different assays measuring different endpoint. A549 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 2 mM L-glutamine and 10 % fetal bovine serum (FBS). HepG2 cells were cultured in Minimum Essential Medium (MEM), supplemented with 2 mM L-glutamine, 1 % non-essential amino acids solution and 10 % FBS. Cells were grown at 37 °C in a humidified atmosphere with 5 % CO₂ and were routinely passaged twice a week.

Metabolic activity of exposed cells was measured by **resazurin assa**y. Cells were seeded in black 96-well plates (7000 A549 cells or 8000 HepG2 cells per well, respectively). After 24 h incubation at controlled atmosphere, allowing cells to attached, cells were treated with different concentrations (1, 10, 100 mg/L) of titanium oxide particles prepared in cell culture medium. After 24 h treatment, 25 μg/mL resazurin was added to each well for 3 hours and incubated at 37 °C. Fluorescence intensity of formed resorufin was measured (560/590 nm ex/em) using spectrofluorimeter (BioTek, Cytation 3, Bad Friedrichshall, Germany). For each

treatment condition 3 independent experimental repeats of 6 replicates were performed.

Coomassie Blue assay was used to measure amount of cellular proteins that is proportional to the cell number. Cells were seeded in transparent 96-well plates (7000 A549 cells or 8000 HepG2 cells per well, respectively). After 24 h incubation at controlled atmosphere, allowing cells to attached, cells were treated with different concentrations (1, 10, 100 mg/L) of titanium oxide particles prepared in cell culture medium. After 24 h treatment, cells were rinsed with phosphate-buffered saline (PBS) and stained by Coomassie Blue solution (0.05 % Coomassie Brilliant Blue G250 in 30 % methanol, 10 % acetic acid, 60 % MilliQ water) for 40 min at room temperature. After additional rinsing with PBS, 0.1 M NaOH was added to solubilize the dye. The absorbance of the day was measured at 630 nm using a microplate reader (BioTek, Cytation 3, Bad Friedrichshall, Germany). For each treatment condition 3 independent experimental repeats of 6 replicates were performed.

Toxicity test with algae Pseudokirchneriella subcapitata

The OECD 201 - Algal growth inhibition test guidelines (OECD, 2011) were followed, using the P. subcapitata (SAG 61.81) as a test organism. All assays were run in three replicates with initial algal cell count of 10000 cells/ml. Test cultures were incubated in 2 mL portions in multiwell plates (Nunclon, Germany) on the orbital shaker (80 rpm) at the temperature of 22 ± 2 °C and constant light exposure (light intensity of 80-120 μ mol photons m⁻² s⁻¹) in the algal growth chamber (LTH, Slovenia). Algal growth and fluorescence spectra in 50 μ l from every well were assessed at 24, 48 and 72 h with a flow cytometer (MacsQuant, MiltenyBiotech, Germany). Algal cultures were inspected also under light microscope (Nicon Eclipse TE300, Japan).

The final test result was growth inhibition, expressed as a logarithmic increase in cell count (average specific growth rate) within 72 h of exposure to selected materials.