Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

Photochemical interactions between n-Ag₂S and n-TiO₂ amplify their bacterial stress response

Supporting information

Carolyn M. Wilke¹, Claire Petersen¹, Marco A. Alsina^{1,2}, Jean-François Gaillard^{1*}, and Kimberly A. Gray^{1*}

¹Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208

² Current address: Department of Construction Engineering and Management, University of Talca, Camino Los Niches Km.1, Curicó, Región del Maule, Chile

*Corresponding authors: Kimberly A. Gray and Jean-François Gaillard

 ${\bf Email: k\hbox{-}gray} @ northwestern.edu, jf\hbox{-}gaillard} @ northwestern.edu$

Phone: (847)-467-4252, (847)-467-1376

Fax: (847)-491-4011, (847)-491-4011

	Chemical components (mM)										
DOC (a) (mg L-1)	Ca ^{2+ (b)}	Mg ^{2+ (b)}	Na ^{+ (c)}	K ^{+(c)}	Cl-(d)	SO ₄ ^{2- (d)}	NO ₃ -(d)	ΣPO ₄ (e)	Alk ^(f) meq L ⁻¹	IS (g)	pH ^(h)
2.41 ±0.08	0.76 ±0.07	0.41 ±0.04	0.36 ±0.02	0.035 ±0.001	0.32 ±0.05	0.21 ±0.06	0.022 ±0.009	BDL ⁽ⁱ⁾	1.92 ±0.04	5.4 ±0.4	8.1 ±0.1

⁽a) DOC: dissolved organic carbon, measured on high-temperature combustion total organic carbon analyzer (Dohrmann Series Apollo 9000)

Table S1: Chemical characteristics of Lake Michigan Water. All measurements were done in triplicate and reported values are average \pm standard deviation. This table was published in the ESI of Wilke, et al. (Environ. Sci.: Nano, 2018, 5, 96-102)³

⁽b) Ca²⁺, Mg²⁺ measured by flame atomic absorbance spectroscopy (Perkin Elmer PinAAcle 500)

⁽c) Na⁺, K⁺ measured by flame atomic emission spectroscopy (GBC 932 AA)

⁽d) Cl-, SO₄²⁻, NO₃- measured by ion chromatography (Methrom Compact IC pro Unit #881)

 $^{^{(}e)}$ $\Sigma PO_4,$ or soluble reactive phosphorus, measured by colorimetry after reaction with molybdate $^{1,\,2},$ detection limit $\sim 1~\mu M$

⁽f) Alk: alkalinity, measured by computerized titration using a MacIntosh ME-10 unit, a ThermoTM Scientific Orion Glass Body ROSSTM Combination Electrode, and 0.1000(+/- 0.0005) N hydrochloric acid.

⁽g) IS: ionic strength on the mM unit basis.

⁽h) measured using a ThermoTM Scientific Orion Glass Body ROSSTM Semi Micro Combination Electrode and an Accumet Research AR20 pH meter using NIST buffer solutions for calibration.

⁽i) BDL: Below detection limit

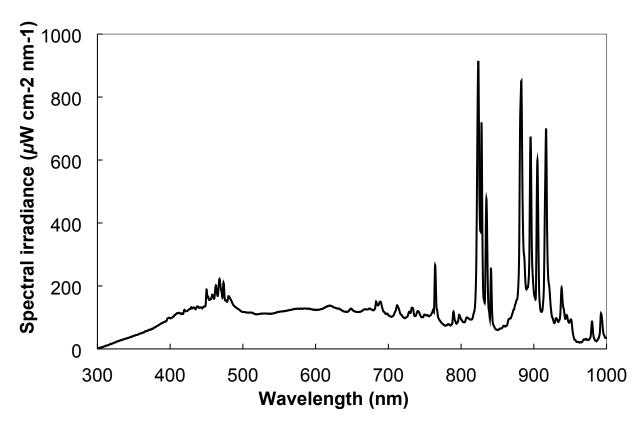
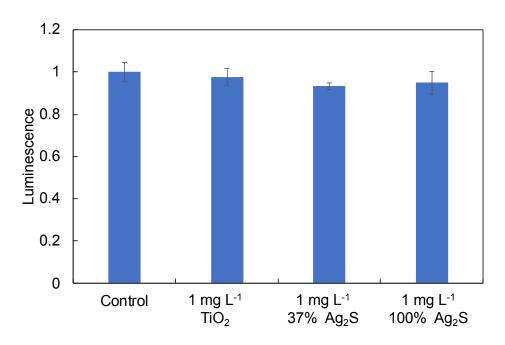



Figure S1: Spectrum of simulated solar irradiation from Xe arc lamp (900W).

Figure S2: Potential interferences with NMs for the ATP assay. Significant differences were not observed between NMs and the control (based on p < 0.05).

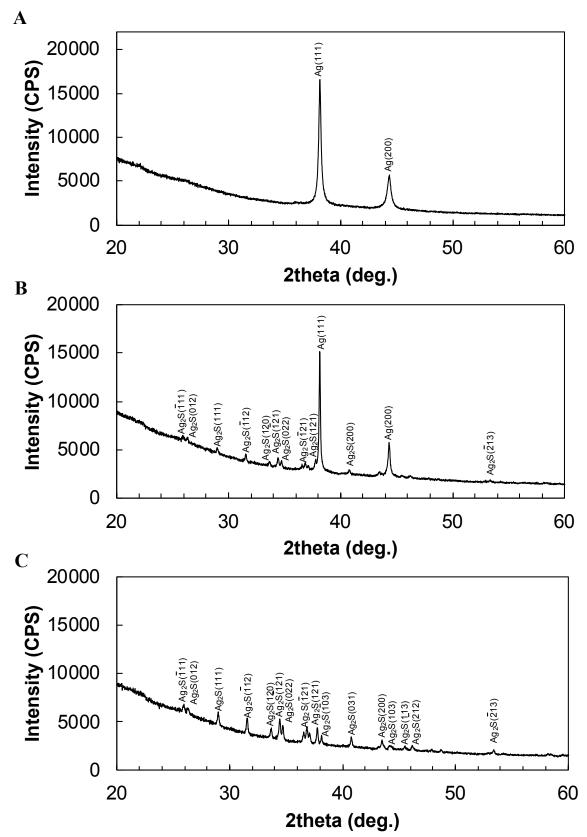
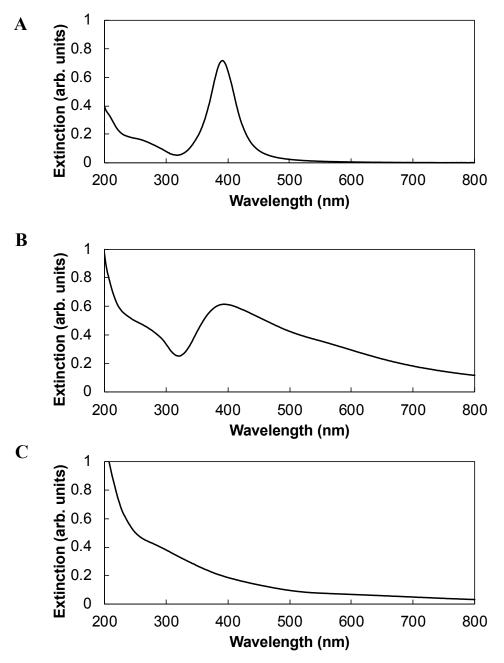
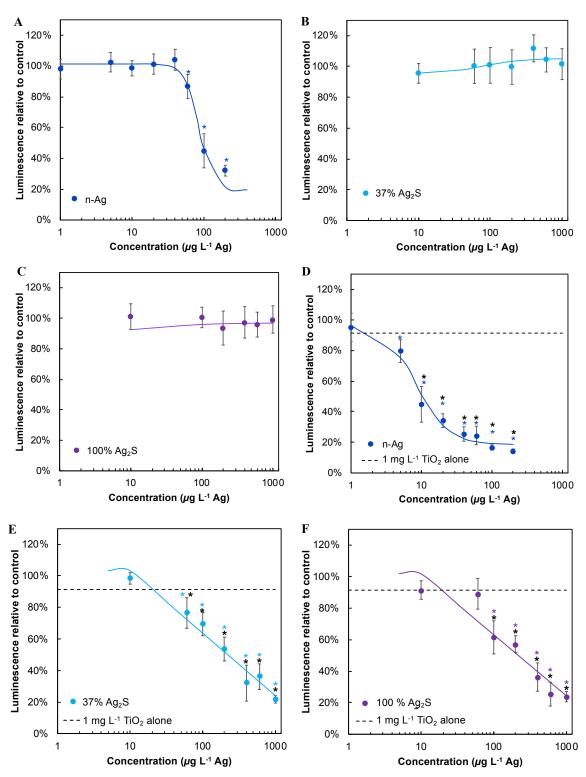




Figure S3: X-ray diffractograms for (A)n-Ag, (B) 37% Ag₂S, and (C) 100% Ag₂S.

Figure S4: UV-vis extinction spectra of Ag-containing NMs. (A) n-Ag, 40 fold dilution (B) 37% Ag₂S, 10 fold dilution (C) 100% Ag₂S, 10 fold dilution.

Figure S5: Effect of n-Ag, or partially or fully sulfidized n-Ag on bacterial ATP under simulated solar irradiation reproduced from main text (A-C) without n-TiO₂ or (D-F) with 1 mg/L n-TiO₂ (dashed line shows n-TiO₂ alone for comparison). Statistical significance (p < 0.05) for values compared with control is shown by asterisks in same color as dataset. For tests with TiO₂, statistical significance compared with n-TiO₂ alone is shown by black asterisk.

Ag- containing NM	Concentration of stock (as Ag, ppm)	Morphology	Primary size (nm)	Hydrodynamic diameter (nm)	Zeta potential (mV)
citrate n-	219 ± 6	spherical	13 ± 7	18.3±0.1	-27.0 ± 2.6
37% Ag ₂ S	160 ± 2	spherical, with bridges formed between particles	38 ±18	40.8 ±0.4	-29.9± 1.2
100% Ag ₂ S	139 ± 2	spherical, with bridges formed between particles	17 ± 11	55.0± 1.1	-32.8± 3.2

 Table S2: Characterization of Ag-containing NMs

References

- 1. Stainton, M.; Capel, M.; Armstrong, F., Chemical analysis of fresh water. Mar. Serv. Misc. Spec. Pub. #25. **1977**, 166 p.
- 2. Murphy, J.; Riley, J. P., A modified single solution method for the determination of phosphate in natural waters. *Anal. Chim. Acta* **1962**, *27*, 31-36.
- 3. Wilke, C. M.; Gaillard, J.-F.; Gray, K. A., The critical role of light in moderating microbial stress due to mixtures of engineered nanomaterials. *Environ. Sci. Nano.* **2018**.