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Flow chamber design 

 

 

 

 

 

 

 

 

 

 

Fig. S1 Experimental setup for mixing a Fe nitrate and Na hydroxide solution added with motor 

burets. The tips, where mixing occurs, is mounted about halfway on a pH electrode hanging in a vessel 

that is kept under N2 atmosphere. This allows continuous pH-recording of the mixed solution, passing 

the glass membrane before it flows into the vessel where it is stirred magnetically. The pH-recording 

allows the setting of the rate of the NaOH addition at a constant rate (8 mL min-1) of the Fe nitrate 

addition, keeping the pH value about 0.5-1.0 pH unit below the final target value. Progressively, the 

vessel gets filled and the recorded pH then refers to the suspension as a whole that is subsequently 

increased to the final pH once the addition of partially neutralized Fe-nitrate solution has stopped (~3 

minutes). The final NaOH addition to reach the target pH value is done at a lower speed.  
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Size-dependent Stern layer capacitances and adsorption 

 

Primary charge 

The capacitance of a spherical capacitor (𝐶1,𝑟) can be given as: 

 

𝐶1,𝑟  =  
𝑟 + 𝑟

𝑟
  𝐶1                                                                                                                      (𝐸𝐴 − 1) 

 

in which r is the inner radius of the sphere and 𝑟 the thickness of the layer.  

In case of an Extended Stern (ES) layer model (Hiemstra and Van Riemsdijk 2006) with 

two Stern layers, a value of 𝑟1 = 0.35 nm is used to calculate the inner Stern layer 

capacitance from C1 of a flat layer at a given particle radius r.  

The capacitance of the second spherical Stern layer (𝐶2,𝑟) is found with:  

 

𝐶2,𝑟  =  
𝑟 + 𝑟1 + 𝑟2

𝑟 + 𝑟1
  𝐶2                                                                                                       (𝐸𝐴 − 2) 

 

using 𝑟2 = 0.35 nm as derived for the compact double layer with a total thickness of 0.7 nm, 

equivalent with the packed size of nearly three water molecules (Hiemstra and Van Riemsdijk 

2006). In the calculation, C2 is the capacitance of the outer Stern layer of a flat layer. 

For Fh, the Stern layer capacitance values for the flat layer (r) have been set equal to 

the numbers found for well-crystallized goethite, i.e. C1 = 0.9 F m-2 and C2 = 0.74 F m-2
 

(Hiemstra and Van Riemsdijk 2006). For 2LFh, the typical capacitance values with a diameter 

of ~2.5 nm are C1 = 1.15 F m-2 and C2 = 0.90 F m-2 (Hiemstra and Zhao 2016). These values 

are very different from the values given by Antelo et al. (2010, 2015), i.e. C1= 0.74 F m-2 and 

C2 = 0.93 F m-2. The much lower value for C1 indicates a lower surface charge density. 
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Phosphate adsorption and curvature 

The effect of the surface curvature on the PO4 adsorption at a given pH and PO4 

equilibrium concentration is shown in Fig.S2 (left panel). At decrease of the particle size, the 

electrostatic effects decrease. The reduction of the field strength allows the adsorption of 

more ions. The field becomes less limiting.  

In case of a constant PO4 loading (right panel), the increase of the capacitance at decrease 

of the particle size will lead to a lower equilibrium concentration of phosphate. 

 

 

 

 

Fig. S2 Left panel. Adsorption of phosphate as a function of particle size, in case of spherical Stern 

layers (ES model) for Fh at the conditions given. The adsorption increases by ~10% or less compared 

to the adsorption at a flat surface. A similar size dependency of the adsorption due to a variable 

capacity has been illustrated in Hiemstra and Zhao (2016).  Right panel. Logarithm of the equilibrium 

concentration of PO4 at a constant surface loading (1 and 2 mol PO4 m-2 at respectively pH=8 and 

pH=5 in 0.01 M NaNO3). The equilibrium concentration decreases substantially. 
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Deriving the rate of growth R (mol m-2 h-1) 

 

Time-dependency of the particle size 

  

For obtaining the experimental rate of growth R, the function:  

 

𝑑 = 𝑘𝑡1/𝑛 + 𝑑o              (EA-3) 

 

has been used in the data analysis (Fig. S3) Equation EA-3 is a general equation for describing 

the growth of particles with different theories and mechanisms (Huang, Zhang et al. 2003). 

The value of exponent n depends on the rate limitation and conditions assumed. At crystal 

growth controlled by diffusion of ions across the solid-solution interface, n is equal to the 

value n = 3. In that case, the volume (V  d 3) increases linearly with the ageing time t as 

derived by Lifshitz and Slyozov (1961), and Wagner (1961). However, our data for ageing of 

Fh in a NaNO3 solution show a non-linear relation of the volume V with time.  For Fh, the 

process of growth has another time dependency. The growth decrease more quickly with time.   

 

 

Fig. S3. Particle diameter (d) related to a power function of time (t1/n) for ageing at pH 5 and 9. For 

each pH, the best value of the exponent 1/n of the time (h) is optimized to get the best description with 

a linear function d = k t 1/n + do, in which do is the diameter at t = 0. 

 

 

In the pH range 5-9, the fitted value of exponent 1/n equals 0.21 ± 0.06 if the value of 

do is simultaneously fitted. The value do represents the initial size at t = 0. It is the intercept in 
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the plot. If a common value of do is assumed (do = 1.68 nm), 1/n = 0.26 ± 0.05. In the latter 

case, the corresponding inverse value is n = 3.9  0.7.  

 

Rate of growth 

With the above function (EA-3), the rate of growth R has been derived by fitting the values k, 

do, and 1/n for each data set (Fig.S3). The calculation of R starts by taking numerically the 

derivatives of the optimized function at a chosen time t. The procedure requires 

simultaneously the calculation of the mass density nano according to (Hiemstra 2018b): 

 


nano

=
𝑀core

𝑛O𝑉O
− (

𝑀core

𝑛O
− MH2O)

6

𝑑
 𝑁H2O                                                                         (𝐸𝐴 − 4)  

 

and specific surface area A according to: 

 

𝐴 =
6


nano

 𝑑
                                                                                                                                (𝐸𝐴 − 5)  

 

followed by calculating the molar mass Mnano according to: 

 

𝑀nano = 𝑀core

1

(1 − 𝐴 𝑁H2O𝑀H2O) 
                                                                                     (EA − 6)  

  

In combination (nano, Mnano), one can obtain the corresponding number of Fe per particle 

(nFe), according to:   

 

𝑛Fe  =  


nano

𝑀nano
  
𝑑3

6
  NAv                                                                                                        (𝐸𝐴 − 7)  

  

In the above equations, NH2O is the surface density of coordinated water (12.6 10-6 mol m-2 

(Hiemstra 2015), nO is the amount of oxygen per Fe in the bulk (1.6), Mcore is the molar mass 

of the Fh core (81.65 g mol-1), MH2O is the molar mass of water (18 g mol-1), and NAv is 

Avogadro’s number (6.022 1023 mol-1).   

 In equation EA-4, VO is the lattice volume, expressed per mol oxygen. The value of VO 

can be estimated from the relation between mass density (g m-3) and molar mass per oxygen 
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(g / mol O) (Hiemstra and Van Riemsdijk 2009a) or alternatively, it can be calculated from 

the chemical composition combined with the volume of the unit cell that provides the mass 

density of the bulk (Hiemstra 2018a): 

 

𝑉O  =  
𝑀core

𝑛O 
core

                                                                                                                        (𝐸𝐴 − 8)  

 

For iron (hydr) oxides in general, VO ~ 10.8 10-6 m3 mol-1 O (Hiemstra and Van Riemsdijk 

2009a). Based on the unit cell dimensions derived by Wang et al.(2016) and Pinney et al. 

(2009), VO = 10.7 10-6 m3 mol-1 O.  The number is equivalent with a mass density of core = 

4.77 106 g m-3, but might be slightly higher (~ 2 %) according to other parametrizations 

(Harrington, Hausner et al. 2010, Michel, Barron et al. 2010, Maillot, Morin et al. 2011) 

leading to core = 4.92 ± 0.03 106 g m-3 and VO = 10.5 10-6 m3 mol-1 O. 

 Ultimately, the rate of growth R (mol m-2 h-1) follows from the change of nFe with 

change of time t, scaled to the surface area of the particle (A# =  d 2) at the corresponding  

time, according to:  

 

𝑅 =

𝑑𝑛Fe

𝑑𝑡
𝐴#

                                                                                                                                 (𝐸𝐴 − 9)  
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A monolayer of Fe: surface density 

  

 

 

Fig. S4 Mean surface density of Fe (spheres) at the repetitive growth of Fh using the a-direction of the 

unit cell with a = 0.587 nm as measure for the representative distance (Harrington, Hausner et al. 

2011). The surface density has been derived by step-wise increasing the particle diameter d with the 

repetitive Fe-Fe distance ( L = ½3 a/2  = 0.25 nm), i.e. d + 2 L, and calculate self-consistently with 

the equations given in the main text  the increase of the amount of Fe in the volume of the layer with 

thickness L. By scaling to the corresponding particle surface area A# =  d 2, the Fe surface density 

follows. Another approach is to use the mean Fe-Fe distance in the Fh lattice as repetitive distance (L 

= 0.33  0.02 nm), leading to a higher surface density (squares). If individual crystal faces are 

considered, similar values are found for the mean repetitive growth, i.e. ~15 mol m-2 for the 100 or 

010 face, and ~20 mol m-2 for the 001 face.  

The orange color gives the size of 6LFh (~ 5.5 nm, nFe ~ 2600), formed by forced hydrolysis 

of Fe(III) at 75 oC  (Guyodo, Banerjee et al. 2006)(Gentile, Wang et al. 2018). If formed by Fe 

adsorption to Fe13 nuclei, the formation of this 6LFH particle is equivalent with the binding of ~6-8 

monolayers of Fe. 
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Polyhedral representation of a non-aged initial Fh particle  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S5. A ferrihydrite particle built from 45 Fe polyhedra with the composition Fe45O132H129. This is 

equivalent to FeO1.4(OH)0.2.nH2O with n = 1.5. The blue spheres are oxygen ions. The protons are not 

shown. The particle has a Fe13 signature and contains two linked Fe13 units that are given with red, 

dark red, and orange-colored polyhedra. Additionally attached Fe polyhedra are given in blue. The 

constructed particle is surface depleted (Hiemstra 2013) by Fe2 (orange) octahedra and Fe3 (dark red)  

tetrahedra because these polyhedra are considered as less stable at the surface of Fh when forming 

singly coordinated surface groups. 

 

 

  



10 
 

Influence of initial particle size on ageing 

 

Fig. S6. Time dependency of the mean particle diameter d (nm), number of Fe per particle nFe, specific 

surface area A (m2 g-1), and rate of growth R (mol m-2 h-1) of traditionally synthesized Fh, produced 

and aged at pH 8.2 in 0.01 M NaNO3 at 20 oC (spheres) for t  4 hours. The lines have been calculated 

with the dynamic model for logk = -4.97 (eq.8, main text) using different values for the amount of Fe 

present in the initial particles.  

 

 

The model results of Fig.S6 show that increase of the size of the initial particles (nFe) 

does not lead to a considerable increase of the particle size at prolonged ageing. The reason is 

that the increase of the particle size leads to a substantial decrease of the solubility and super 

saturation, acting as a very strong negative feedback on the rate of growth R. However, the 

choice of the value of nFe at time t = 0 becomes critical at shorter times of ageing as used in 

the experiment with the organic pH buffers (t = 0.1 and 1.5 hours). The dotted vertical line 

indicates 4 hours of ageing.  
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Rate limitation by diffusion across the solid-water interface 

The rate limitation of growth by diffusion from the solution to the surface leads to a time 

dependent growth of the diameter according to d = k t 1/n with n =3, according to Lifshitz 

and Slyozov (1961). This theory is based on combining Fick first law with the Ostwald-

Freundlich equation for describing the solubility as a function of the particle size. The latter 

equation is used in its linearized form. 

 The classical Ostwald-Freundlich (OF) equation can be given as: 

 

R𝑇ln
𝑄so

𝐾so
=

2

3
 𝐴c =  

 𝑀nano


nano

2

 𝑟c
                                                                                           (𝐸𝐴 − 10) 

 

in which Qso and Kso are respectively the solubility products of the actual Fh of given radius 

of the critical particles and the virtual bulk, and Ac is the specific surface area (m2 mol-1) of 

the critical particle in the size distribution.  

Taking the exponential of equation EA-10 and simplifying with ex = 1 + x for x 0, 

one gets the linearized Ostwald-Freundlich (L-OF) equation: 

   

𝑄so

𝐾so
=  𝑒

1

R𝑇
 
 𝑀nano 

nano
  

2

𝑟c
 
  1 +

2   

R 𝑇 

𝑀nano

nano

1

𝑟c
                                                                                (𝐸𝐴 − 11)

          

With increase of the critical radius rc, linearization of the equation is increasingly justified as 

shown in Fig.S7. In Fig. S7, we have given the difference in super saturation. Only at a large 

size, the relative difference in the calculated solution concentration of OF and L-OF becomes 

small. For d ~6.5 nm, (Qso/Kso ) = 1 as indicated in the graph with the black sphere. In that 

case, Qso/Kso (OF) ~ 3 and Qso/Kso (L-OF) ~ 2, i.e. the super saturation calculated with the OF 

approach is 50% higher. The difference quickly increases at a smaller particle size. 
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Fig. S7 Size-dependent difference in relative solution concentration (Qso) of Fh calculated with the 

classical and the linearized Ostwald-Freundlich equation scaled to the solubility of the virtual bulk of 

Fh (Kso). The calculated concentration difference is orders of magnitude different when particles are 

small. The black sphere locates the system in which the relative difference has decreased to 

(Qso/Kso)= 1, where the super saturation calculated by the OF equation is 50% higher than with the L-

OF approach. 

 

 

The factors Qso and Kso can be linked to the concentration of dissolved aqueous 

species (aq) at a given pH in equilibrium with respectively a particle of critical size (crc) and 

virtual bulk material at infinite size c, leading to: 

 

𝑐𝑟c
=  𝑐 +

2   

R 𝑇 

𝑀nano

nano

1

 𝑟c 
𝑐      𝑐 +



 𝑟c 
                                                                          (𝐸𝐴 − 12)

          

By defining super saturation of the solution as   co - c in which co is actual solution, 

Lifshitz and Slyozov(1961) derived for the concentration gradient between solution and 

surface of the growing particles with radius r   

 

  𝑐𝑟c
−  𝑐o = (



 𝑟c 
+ 𝑐) − ( −  𝑐) =  



 𝑟c 
+                                                           (𝐸𝐴 − 13)

  

This concentration difference is introduced in the Fick’s first law of diffusion.  
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Required length of diffusion explaining the rate of growth of Fh   

Our measured rates of growth (R) are typically in the order of R ~ 0.01 - 10 µmol m-2 h-1 or R 

~ 3 10-12 - 3 10-9 mol m-2 s-1. Assuming that the rate of growth is limited by diffusion across 

the solid-solution interface, one may calculate the diffusion length required to explain the 

experimental rate of growth R by using Fick’s first law as a first approach that is combined 

with the classical Ostwald Freundlich equation.  

 According to Fick’s first law, we may write for the flux F (mol s-1): 

 

𝐹 = −𝐷𝐴#
𝜕𝑐

𝜕𝑥
                                                                                                                          (𝐸𝐴 − 14)  

 

in which D is the diffusion coefficient in m2 s-1, A# is the surface area (m2), and 𝜕𝑐/𝜕𝑥 is the 

linear concentration gradient with the concentration c in mol m-3 and the diffusion length x in 

m.  

 Rewriting of EA-14 leads to an expression for the length of the diffusion path L 

between the solution (x = 0) and surface (x = x):  

 

𝐿 =
1

𝐹/𝐴#
 𝐷 (𝑐o − 𝑐surf) ~ 

𝐷

𝑅
𝑐eq                                 (EA-15) 

 

in which the flux F per unit surface area A# represents the rate R of growth (R = F/A# in mol 

m-2 s-1). The concentration in the solution (co) is determined by the solubility of the critical 

particle with size dcrit and the concentration at the surface (csurf) is determined by that of Fh 

particle of mean size dmean. For a polydisperse Fh suspension, both sizes are related by a factor 

of about  = dmean / dcrit = 3/2.  The corresponding equilibrium concentrations can be 

calculated with the Ostwald-Freundlich equation.  If the difference co - csurf is relatively large, 

one may simplify to co - csurf = ceq in which the latter is the equilibrium concentration 

maintained by the critical particles. 

 In Fig. S8, the distance L at which the rate is limited by diffusion is given. It has been 

calculated for a suspension with Fh particles of different mean size having a rate of growth in 

the range R = 0.01 - 10 µmol m-2 h-1 or ~ 3 - 300 10-12 mol m-2 s-1, taken from Fig.4 in the 

main text. The corresponding size dependent solubility products (logQso = log(Fe3+) + 3 

log(OH-)) can be used to calculate the solution concentrations as a function of pH. Depending 
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on the size, the concentrations at neutral pH are in the order of about 10-7 -10-9 M or 10-4 -10-6 

mol m-3.   

 

 

Fig. S8. Interfacial length of diffusion L (µm) that can explain the observed rates of growth (R) of Fh 

with mean sizes (dmean in nm) as given. Compared to the mean particle size of Fh (~nm), the diffusion 

length L (~ µm) is very large, making rate limitation by interfacial transport unlikely, particularly 

because the Fh particles in the actual suspension are aggregated. The Fh solubility has been calculated 

with the Ostwald-Freundlich equation (eq.7 main text) using a surface Gibbs free energy of 0.186 J m-

2, a size distribution ratio of  = dmean / dcrit = 3/2, and a solubility product for Fh bulk of logKso = -40.6.  

The rates (µmol m-2 h-1) used to calculate L are 10 (blue spheres), 1.0 (red triangles), 0.1 (green 

diamonds), and 0.01 (yellow squares), typically for a timescale of ageing being respectively about 0.1, 

1, 10, and 100 h.  

 

Using a representative value for the diffusion coefficient, for instance D = 0.6 10-9 m2 

s-1 for Fe3+, the calculated distance L (Fig. S8) at which the rate becomes limited by diffusion 

is typically in the order around one µm, depending on the particle size and pH in solution 

(Fig. S8). As these distances are relatively large compared to the size of the Fh nanoparticle 

(> 100-1000 times), the calculated result supports our interpretation that the rate of growth is 

not limited by diffusion across the solid-solution interface but by another process. Moreover, 

Fig. S8 shows that if diffusion would be rate-controlling, the diffusion length would not 

change with size or time, whereas our data would point to a significant change (Fig. S8).  
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Mean particle-particle distance in suspensions   

One may calculate the mean equivalent distance x (m) between Fh particles in a suspension in 

the case of a homogenous distribution over space (no aggregation), taking the one-

dimensional distance of the Fh particle density in the suspension according to: 

𝑥 = (
𝑛Fe𝑀nano

𝑁Av sus

)
1/3

         (EA-16) 

in which nFe is the number of Fe per particle and Nav is  Avogadro’s number (mol-1), Mnano is 

the molar mass of Fh (g Fh mol-1 Fe), and sus is the suspension concentration (g m-3). In 

combination, this gives the Fh particle density (Fh particles m-3). The third root of this particle 

density can be seen as representative for the mean particle distance x (m). The calculated 

mean distance for representative particles of certain size (d-Fh) is given in the table below. 

 

Table S1 Mean particle-particle distance in a supposed homogeneous suspension 

with a concentration of 1 g Fh L-1 (sus = 10-3 g m-3). Note that Fh with 5 and 10 

nm has not been studied in this paper, but it has been added for comparison. 

d-Fh (nm) Mnano (g mol-1) nFe x (nm) 

1.7 108 47 20 

2.0 101 88 25 

2.5 95 195 31 

3.0 92 363 38 

5 87 1930 65 

10 84 16930 133 

 

 

 Collectively, the above shows that rate limitation by diffusion across the interface 

cannot explain the rate of growth of Fh. The growth of Fh is much slower.  In literature, rates 

of growth of materials are often limited by diffusion.  This will occur if the reaction at the 

surface is fast, creating relatively large particles and low super saturation, i.e. low 

concentration gradient.  

 Finally, it is interesting to note that the rate of Fe attachment is rather comparable with 

the rate of the adsorption of ions such as PO4, being typically in the order of the scale of µmol 

m-2 h-1.  
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Ageing of 6LFh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. S9. Time dependency of the mean particle diameter d (nm), and specific surface area A (m2 g-1) of 

6LFh. If synthesized by forced hydrolysis at 75 oC for 10-12 minutes, according to the method of 

Schwertmann and Cornell (1991), the initial size is about 5.5 nm (Guyodo, Banerjee et al. 2006, 

Gentile, Wang et al. 2018). According to our model (lines), storage and long-term ageing of the 

material at 20 oC leads to no notable change in size and surface area by Ostwald ripening, in 

agreement with recent data collected by SAXS (Gentile, Wang et al. 2018) after 1 and 9 months of 

ageing. At 75 oC, some classical Ostwald ripening may occur according to our model, but more 

significant changes may be expected from oriented particle attachment and/or fusion, which is typical 

for ageing at high temperature (Burleson and Penn 2006).  
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