Supporting information for

The oxidation and removal of $\mathbf{A s}$ (III) from soil using a novel magnetic nanocomposite derived-biomass wastes

Jianghu Cui ${ }^{\dagger}, 1$, Qian Jin ${ }^{\ddagger, 1}$, Yadong Li^{\dagger}, Fangbai Li^{\dagger}, ${ }^{*}$
${ }^{\dagger}$ Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science \& Technology, Guangzhou 510650, China
\# College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China

* Corresponding author. Tel.: +86 2037021396.

E-mail address: cefbli@soil.gd.cn (F.B.Li)
${ }^{1}$ Jianghu Cui and Qian Jin contributed equally to this work.

Fabrication of BMN-loaded sponges: A piece of commercially available sponge (density of $0.018 \mathrm{~g} \mathrm{~cm}^{-3}$, 60 pores per linear inch, Shanghai Caili Trade Co., Ltd.) was washed with distilled water and acetone several times and dried at $80^{\circ} \mathrm{C}$. The sponge was then cut into small sponge particles (diameter of 2 mm). 10 mg sponge particles were dipped into BMN powder (80-100 mesh) to coat BMN particles to the sponge skeletons. Subsequently, the BMN-loaded sponges were immersed into a dilute solution of polydimethylsiloxane in toluene ($0.25 \mathrm{mg} \mathrm{mL}^{-1}$), and dried in an oven at $80^{\circ} \mathrm{C}$ for 12 h .

Figure S1. Adsorption isotherms of $\mathrm{As}(\mathrm{III})$ on the precursor at different $\mathrm{pH}(\mathrm{pH}=4.0,7.0$ and 9.0).

Figure S2. Influence of the recycling and reuse of BMN on the concentration of $\mathrm{As}(\mathrm{III})$ and $\mathrm{As}(\mathrm{V})$ in the desorption experiments.

Table S1. Langmuir and Freundlich models for As (III) adsorption isotherms

	Langmuir constants		Freundlich constants			
pH	$\mathrm{Q}_{\max }\left(\mathrm{mg} \mathrm{g}^{-1}\right)$	b	R^{2}	$\mathrm{~K}_{\mathrm{f}}$	n	R^{2}
4.0	15.605	0.0694	0.991	1.4696	2.4931	0.8477
7.0	16.223	0.0809	0.993	1.5343	2.4820	0.855
9.0	10.918	0.2115	0.983	1.4568	3.0572	0.9134

Table S2. Pseudo-second-order model for $\mathrm{As}(\mathrm{III})$ adsorption kinetics

Adsorbent/Adsorbate	C_{0}	Pseudo second order model			
		q_{e} $\left(\mathrm{mg} \mathrm{g}^{-1}\right)$	K_{2} $\left(\mathrm{~g} \mathrm{mg}^{-1} \mathrm{~min}^{-1}\right)$	R^{2}	
	5.0	1.0452	0.9155	0.9469	
BMN/As(III)	10.0	1.5097	0.4388	0.9959	
	15.0	2.2311	0.2009	0.9923	
	20.0	3.2680	0.0936	0.9902	

