Electric Supplementary Information (ESI) on

Mutual effect of Cs(I) and Sr(II) sorption on nano-talc investigated by EXAFS, modeling and theoretical calculations

Yubing Sun^a, Wencheng Song^a, Yang Liu^a, Tasawar Hayat^b, Ahmed Alsaedi^b, Yuejie

Ai^a*, Virender K. Sharma^c, Xiangke Wang^{a, c}*

^a MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power

University, Beijing 102206, P.R. China

^b NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

^c School of Public Health, Texas A&M University, Texas 77843, USA

^d Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, P.R. China

sunyb@ipp.ac.cn (Y. Sun); wencsong@cmpt.ac.cn (W. Song); tahaksag@yahoo.
com (T. Hayat); aiyuejie@ncepu.edu.cn (Y. Ai); vsharma@sph.tamhsc.edu (Virender
K. Sharma); xkwang@ncepu.edu.cn(X. Wang).

Preparation of FT-IR, XPS and EXAFS samples

The samples for FT-IR and XPS analysis was prepared as followed procedures: 3.0 mL of 0.1 mol/L NaClO₄ solution and 15 mL of 20.0 mg/L Sr(II) or Cs(I) solutions (7.5 mL of 20.0 mg/L Sr(II) and 7.5 mL of 20.0 mg/L Cs(I) solutions for competitive adsorption) were added into 50 mL polycarbonate tubes, and then 12 mL of 5.0 g/L talc suspensions were provided. pH values of suspension were adjusted 5.0 by adding negligible volume of 0.1-5.0 mol/L HClO₄ or NaOH solution. Then suspension was agitated on a shaker for a reaction time of 48 h. The solid and liquid phases were separated by centrifugation at 7710 $\times g$ for 30 min. The samples for IR and XPS analysis were obtained by drying them in vacuum oven overnight. The samples for EXAFS analysis of Sr(II)-bearing talc at pH 5.0 were prepared as the following protocols: the talc and NaClO₄ (0.01 mol/L ionic strength) were weighted into 250 mL flask bottles and then Milli-Q water was pre-equilibrated for 24 h. The Sr(NO₃)₂ or CsNO₃ solution (m/V = 2.0 g/L) were dropwise added under vigorous stirring conditions, and the solution were adjusted to pH 5.0 by using neglected volume 0.01-1.0 mol/L HClO₄ or NaOH solution. Samples were then gently agitated on a shaker for 2 days. The solid phase was separated from liquid phase by centrifuging it at 7710 \times g for 30 min and then through 0.22-µm membrane filters. The wet pastes of Sr(II)bearing talc were mounted in Teflon sample holders with Kapton tape.

Selected properties of talc

The constitutes (%), N_2 -BET surface area, protonation and deprotonation constants (log K⁺ and log K⁻) of talc were showed in Table S1.

Talc constitutes	S_{BET}	Average pore	Log K ⁺	Log K ⁻
(%)	(m²/g)	diameter (nm)		
SiO ₂ (63.65), MgO (30.63)	10.23	6.67	4.69	-6.06
FeO(0.24), Al ₂ O ₃ (0.54),				
CaO(0.32), K ₂ O (0.1), Na ₂ O (0.1)				

Table S1 The Selected Properties of Talc Samples

Table S2. The constitutes of simulant groundwater (#1) and seawater (#	#2) ^{S1}
--	-------------------

Constitutes of #1	Concentration (mg/L)	Constitutes of #2	Concentration (mg/L)
Ca ²⁺	100	Na ⁺	8050
Mg^{2+}	6.3	Mg^{2+}	930
Na ⁺	25	Ca ²⁺	305
Sr^{2+}	0.8	K^+	295
Cs^+	0.5	Sr^{2+}	7.5
Cl-	236	Cs^+	0.5
CO ₃ ²⁻	0.9	Cl-	10410
SO4 ²⁻	0.9	CO ₃ ²⁻	210

Characterization

The morphology of magnesium silicate was illustrated by scanning electron microscopy (SEM, JSM-6700F field emission scanning electron microscope, JEOL). The mineralogy of magnesium silicate was identified by X-ray diffraction (XRD, D/Max-Ra X-ray diffraction spectrometer, RIGAKU) with graphite monochromatized Cu-Ka radiation at 2 °/min of scan speed and 0.02° of step size. The surface functional groups of magnesium silicate were confirmed using Fourier transform

infrared spectrometer (FT-IR, JASCO FT-IR 410 spectrophotometer). Samples for FTIR analysis were prepared by adding 2.0 mg of magnesium silicate into 0.098 g KBr disks. The total elemental analyses of magnesium silicate were performed with an inductively coupled plasma- optical emission spectrometer (ICP-OES, Nippon Jarrell-Ash). The values of ζ -potential (mV) were determined at least three measurements for each pH (pH 2-11, *I* = 0.01 mol/L NaClO₄).

Figure S1. Characterization of Talc. A: SEM image; B: XRD patterns; C: FT-IR spectra; D: zeta-potentials

Distribution Coefficient. Distribution coefficient (K_d , mL/g) was used to determine the affinity of talc for Sr(II)/Cs(I) from aqueous, which can be expressed as Eqn. S1:

$$K_d = \frac{(C_0 - C_e)}{C_e} \times \frac{V}{m}$$
(S1)

where C_0 and C_e were the Sr(II)/Cs(I) concentrations in the initial solution and in the solution after equilibrium with talc, respectively; V/m is the volume-to-mass ratio.

Adsorption kinetics

The data of adsorption kinetics were fitted by pseudo-first- order and pseudo-secondorder kinetic models. The pseudo-first-order and pseudo- second-order kinetic models can be described by Eqns. S2^{S2} and S3^{S3}, respectively:

$$\ln (q_e - q_t) = \ln q_e - k_f \times t$$
(S2)
$$\frac{t}{q_t} = \frac{1}{k_s \times q_e^2} + \frac{t}{q_e}$$
(S3)

where q_e and q_t (mg/g) are the amount of radionuclides adsorbed at equilibrium and at time t, respectively. k_f and k_s are the pseudo-first order and pseudo-second order kinetic rate constant, respectively. The fitted results and the corresponding kinetic parameters are shown in Figure S2 and Table S3, respectively.

Table S3. The parameters of pseudo-first-order and pseudo-second-order kinetic model of Sr(II) and Cs(I) sorption on talc at single- ($Sr(II)_1$ and $Cs(I)_1$) and bi-

Adsorbates	Pseudo-first-order			Pseudo-second-order		
	qe (mg/g)	kf (min ⁻¹)	R ²	qe (mg/g)	ks (g/(mg·min))	R ²
Sr(II)_1	3.917	0.0285	0.8187	4.024	0.0452	0.9998
Sr(II)_2	3.729	0.0079	0.8504	1.831	0.0538	0.9998
Cs(I)_1	4.063	0.0109	0.6531	2.306	0.2387	0.9999

dilute (Sr(II)_2 and Cs(I)_2) systems

Cs(I) 2	3 477	0.0035	0 6995	0 874	0 3262	0 9998
$C_{3(1)}_{2}$	5. 477	0.0055	0.0775	0.074	0.5202	0.7770

Figure S2. Pseudo-first-order (A) and pseudo-second-order (B) kinetic models of Sr(II) and Cs(I) sorption on talc, pH 5.0, I = 0.01 mol/L, m/v = 2.0 g/L, T = 293 K.

Langmuir and Freundlich equations

Langmuir and Freundlich model was described by *Eqns.* $(S4)^{S6}$ and $(S5)^{S7}$, respectively:

$$q_e = \frac{q_{max} \times b \times C_e}{1 + b \times C_e}$$

Langmuir equatio

(S4)

Freundlich equation:
$$q_e = KC_e^{\frac{1}{n}}$$
 (S5)

where $q_e (mg/g)$ and $C_e (mg/L)$ are the mass of sorbed radionuclides on talc and Sr(II)/Cs(I) concentration in solution at equilibrium, respectively. b and K are constants of Langmuir and Freundlich model, respectively. q_{max} , (mg/g) are the maximum adsorption capacity at equilibrium.

	Adsorption isotherms					
	Langmuir		r		Freundlic	ch
Exp. Conditions	Ka	q_{max}	R^2	$\ln K_F$	1/n	R^2
	(L/mg) (mg/g) $((mg/g)/(mg/L)^n)$					
	Sr(II)					
Single-solute	0.089	11.61	0.9995	1.01	0.3164	0.9673
Bi-solute	0.078	9.99	0.9990	0.6761	0.3574	0.9809
	Cs(I)					
Single-solute	0.047	7.072	0.994	-0.3174	0.4974	0.9815
Bi-solute	0.039	4.214	0.9897	-0.869	0.485	0.9902

Table S4. Parameters of Langmuir and Freundlich model for Sr(II) and Cs(I)

adsorption onto talc at single- and bi-solute system.

Distribution of Sr(II) and Cs(I) in aqueous solutions. The distribution of Sr(II) and

Cs(I) in aqueous solutions were calculation by visual MINTEQ mode.^{S4}

Table S5. The equilibrium constants of Sr(II) and Cs(I) species in aqueous solutions

Reactions	Log K	Ref.
Sr(II)		
$Sr^{2+} + H_2O = SrOH^+ + H^+$	-5.20	(S4)
$Sr^{2+} + 2H_2O = Sr(OH)_2 + 2H^+$	-11.50	(S4)
Cs(I)		
$Cs^+ + H_2O = CsOH + H^+$	-7.64	(S5)

Figure S3. The relative distribution of Cs(I) (A) and Sr(II) (B) as a function of pH in

aqueous solutions, $C_0 = 10.0 \text{ mg/L}$, $I = 0.01 \text{ mol} \cdot \text{L}^{-1} \text{ NaClO}_4$, T = 293 K.

XPS Analysis

Figure S4. XPS analysis of talc after Sr(II) and Cs(I) adsorption, A: total scans; B: O

1s spectra; C: Cs 3d spectra; D: Sr 3d spectra.

Cs(I)-sorbed Talc							
Sample	α	shell	R(Å) ^a	CN^b	$\sigma^{2 c}$		
Sr(II)	power	Sr-O	2.60	8.3	0.0025		
		Sr-Si	4.10	1.9	0.0034		
	10°	Sr-O	2.60 ^d	8.26	0.0025 ^d		
		Sr-Si	4.10 ^d	1.95	0.0034 ^d		
	35°	Sr-O	2.60	8.19	0.0025		
		Sr-Si	4.10	1.97	0.0034		
	60°	Sr-O	2.60	8.13	0.0025		
		Sr-Si	4.10	2.02	0.0034		
	85°	Sr-O	2.60	8.15	0.0025		
		Sr-Si	4.10	2.11	0.0034		
Cs(I)	Power	Cs-O ₁	3.15	2.5	0.0013		
		Cs-O ₂	4.28	4.5	0.0026		
	10°	Cs-O ₁	3.15 ^d	2.3	0.0013 ^d		
		Cs-O ₂	4.28 ^d	4.2	0.0026 ^d		
	35°	Cs-O ₁	3.15	2.1	0.0013		
		Cs-O ₂	4.28	3.9	0.0026		
	60°	Cs-O ₁	3.15	2.0	0.0013		
		Cs-O ₂	4.28	3.7	0.0026		
	85°	Cs-O ₁	3.15	1.9	0.0013		
		Cs-O ₂	4.28	3.5	0.0026		

Table S6. Fitted parameters of powder and polarized EXAFS spectra for Sr(II)- and

^a: interatomic distance; ^b: coordination numbers; ^c: Debye-Waller factor; ^d: Fixed to the value determined at power EXAFS analysis.

Optimized structure of talc

A 2 \times 2 supercell of talc [Mg₃Si₄O₁₀(OH)₂] model with 84 atoms was built with the

unit cell parameters of a=b=5.347Å, c=9.607Å; $\alpha=\beta=80$ °, $\gamma=60^{\circ}$. The optimized surface structure can be found in Figure S5.

Figure S5. The optimized structure for the [Mg₃Si₄O₁₀(OH)₂] surface: (a) side view,
(b) top view. Yellow: Mg atom, Blue: Si atom, Red: O atom, and White: H atom.

Figure S6. The snapshots of the MD trajectories for the competitive sorption process

of Sr(II) and Cs(I). Arrows: the direction of movement.

References

- (S1) Lagergren, S. Zur theorie der sogenannten absorption geloster stoffe. Kungliga svenka retenskapsaka demiens, *Handlingar*, **1898**, *24*, 1-39.
- (S2) Ho, Y. S. Mckay, G. Sorption of dye from aqueous solution by peat. *Chem. Eng.* J. 1998, 70, 115-124.
- (S3) van Leeuwen H. P. Dynamic aspects of in situ speciation processes and techniques, In *In situ monitoring of aquatic systems chemical analysis and speciation*; Buffle J., Horvai G., Eds, John Wiley and Sons, Chichester, 2000.
- (S4) Nordstrom, D. K.; Plummer, L. N.; Langmuir, D.; Busenberg, E.; May, H. M.; Jones, B. F.; Parkhurst, D. L. Revised chemical equilibrium data for major water-mineral reactions and their limitation. In *Chemical modeling of aqueous systems II*. (Eds. D. C. Melchior and R. L. Bassett). American Chemical Society Symposium Series, Vol.416, Chap. 31, pp 398-413.
- (S5) NEA. Radionuclide sorption from the safety evaluation perspective. Proceedings of an NEA workshop. October 16-18, 1991. Interlaken, Switzerland. OECD Publications, Paris, France, 1992.
- (S6) Langmuir, I. The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361-1403.
- (S7) Freundlich, H. M. F. Uberdie adsorption in losungen. J. Phys. Chem. 1906, 57, 385-470.

^{1.} Solbra, S.; Allison, N.; Waite, S.; Mikhalovsky, S. V.; Bortun, A. I.; Bortun, L. N.; Clearfield, A., Cesium and strontium ion exchange on the framework titanium silicate $M_2Ti_2O_3SiO_4$ ·nH₂O (M = H, Na). *Environ. Sci. Technol.* **2001**, *35*, 626-629.

^{2.} Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe.Pseudo-second order

model for sorption processes Handlingar 1898, 24, 1-39.

3. Ho, Y. S.; McKay, G., Pseudo-second order model for sorption processes. *Proc. Biochem.* **1999**, *34*, 451-465.

4. Gustafsson, J. P., A windows version of MINTEQ. <u>http://http://www.lwr.kth.se/English/OurSOrware/vminteq/index.htm</u> **2009**.