Supplementary Information

Ratiometric Detection of Heavy Metal Ions Using Fluorescent Carbon Dots

Francisco Yarur, Jun-Ray Macairan, Rafik Naccache*

Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada, H4B 1R6

Center for NanoScience Research Concordia University, Montreal, QC, Canada, H4B 1R6

* = Corresponding author (email: <u>rafik.naccache@concordia.ca</u>)

Figure S1. Relative red-to-blue fluorescence ratio of CD colloidal dispersions at different pH levels. It is noted that the ratios do not change significantly between pH 4 - 8.

Run	Concentration of metal solution (M)	Volume added to cuvette (µL)	Concentration in cuvette (nM)
Q1	0.000001	3.0	1
Q2	0.0001	2.4	81
Q3	0.0001	2.4	161
Q4	0.0001	2.4	241
Q5	0.0001	2.4	321
Q6	0.0001	2.4	401
Q7	0.0001	2.4	481
Q8	0.0001	2.4	561
Q9	0.0001	2.4	641
Q10	0.0001	2.4	721
Q11	0.0001	2.4	801
Q12	0.0001	2.4	881
Q13	0.0001	2.4	961
Q14	0.1	60	2000000

 Table S1. Quenching assay protocol for all metals used.

Figure S2. Heavy metal monitoring with a 50 μ g/mL dispersion of CD through absorbance spectroscopy in the range 100-600 nM (a) Quantitation of Pb²⁺ (b) Assay of a mixture of Pb²⁺ and Co²⁺ (c) Assay of a mixture of Pb²⁺ and Cu²⁺ (d) Assay of a mixture of Pb²⁺ and Hg²⁺ (e) Assay of a mixture of Pb²⁺ and Ni²⁺ (f) Overlaid spectra of the different mixture of ions at 600 nM.

Figure S3. (a) Log-log plot for the Pb^{2+} calibration curve; (b) Log-log plot for the Pb^{2+} calibration curve excluding the first measurement; (c) Calibration curve for the quenching assays for Pb^{2+} (in triplicates), which shows the relative standard deviation at each point of the calibration. It is noted that there is a deviation from linearity at the first concentration point (1 nM) (Fig S3a) for the calibration curve over the entire concentration range. When excluding the first point of the calibration curve (as shown in Fig. S3b), a more linear trend is observed. Therefore, since the measurements of this system diverge from an ideal behavior at low concentrations, a study on how the ratio of each of the points varied from assay to assay was carried out (Fig S3c). This figure depicts the fluctuation of the ratio from the calibration curves of the standard measurements at each concentration. At very low concentrations there is an 8% variation in measurements. Likewise, above the LOD of 37.1 nM, a variation of 1 to 3% is expected.

Figure S4. Control sample containing a 50 μ g/mL dispersion of CDs, which experienced the same light irradiation as the one containing the metal ions: fifteen fluorescence measurements of 30 seconds each at λ_{ex} = 420 nm, absorbance measurement and three lifetime measurements at 368 nm. No significant photobleaching can be observed for the timescales of our measurements.

Figure S5. Fluorescence monitoring of heavy metal ions: Quantitation of (a,b) Hg^{2+} , (c,d) Co^{2+} , and (e,f) Fe^{3+} in the range 1-961 nM using the CDs via ratiometric measurements of blue and red fluorescence.

Figure S6. (a) Quantitation of Hg^{2+} in the 1-961 nM range through absorbance spectroscopy via decreasing of peak A and increasing peak B.

Figure S7. Optical characterization of a 50 μ g/mL dispersion of bCDs in water; (a) Absorbance spectrum with maximum absorbance at 330 nm; (b) Fluorescence spectrum with maximum intensity centered at 485 nm

Table S2. Lifetime measurements for the different metal ions throughout the concentration range 1-961 nM.

No filter Hg²⁺

Lifetime number	Lifetime at 0 nM (ns)	Lifetime at 481 nM (ns)	Lifetime at 961 nM (ns)
1	4.76 (39%)	4.49 (46%)	4.81 (47%)
2	0.20 (61%)	0.19 (54%)	0.24(53%)

Bandpass filter Hg²⁺

Lifetime number	Lifetime at 0 nM (ns)	Lifetime at 481 nM (ns)	Lifetime at 961 nM (ns)
1	4.65	4.71	4.70

*No filter Fe*³⁺

Lifetime number	Lifetime at 0 nM (ns)	Lifetime at 481 nM (ns)	Lifetime at 961 nM (ns)	
1	4.44	4.31	4.53	
2	0.63	0.71	0.69	

Bandtpass filter Fe³⁺

Lifetime number	Lifetime number Lifetime at 0 nM (ns)		Lifetime at 961 nM (ns)		
1	4.56	4.41	4.65		

*No filter Co*²⁺

Lifetime number	Lifetime at 0 nM (ns)	Lifetime at 481 nM (ns)	Lifetime at 961 nM (ns)
1	4.93	4.73	4.99
2	0.62	0.58	0.60

Bandpass filter Co²⁺

Lifetime number	Lifetime at 0 nM (ns)	Lifetime at 481 nM (ns)	Lifetime at 961 nM (ns)	
1	4.97	4.73	4.96	

No filter Pb^{2+}

Lifetime number	Lifetime at 0 nM (ns)	Lifetime at 481 nM (ns)	Lifetime at 961 nM (ns)
1	4.65	4.61	4.62
2	0.42	0.40	0.41

Bandpass filter Pb²⁺

Lifetime number	Lifetime at 0 nM (ns)	Lifetime at 481 nM (ns)	Lifetime at 961 nM (ns)
1	4.70	4.71	4.70

Table S3. Lifetime measurements for bCDs upon the addition of Pb^{2+} throughout the concentration range 100-3000 μ M.

*No filter bCD Pb*²⁺

Lifetime number	Lifetime at 0 nM (ns)	Lifetime at 100 µM (ns)	Lifetime at 200 µM (ns)	Lifetime at 600 µM (ns)	Lifetime at 1 mM (ns)	Lifetime at 2 mM (ns)	Lifetime at 3 mM (ns)
1	3.95	3.74	3.46	3.60	3.36	3.28	3.00