1	Integrated, multi-process approach to total nutrient
2	recovery from stored urine
3	J
4	
5	Neha Jagtap ^{a,b*} and Treavor H. Boyer ^a
6	
7	^a School of Sustainable Engineering and the Built Environment (SSEBE)
8	Arizona State University D.O. Dev 972005, Temps, Avizona, 95297, 2005, USA
9	P.O. Box 8/3005, Tempe, Arizona, 8528/-3005, USA
10	
12	^b Department of Environmental Engineering Sciences
13	Engineering School of Sustainable Infrastructure & Environment (ESSIE)
14	University of Florida
15	P.O. Box 116450, Gainesville, Florida 32611-6450, USA
16	
17 10	*Corresponding author.
18	1 el.: 1-352-340-0057. E mail addresses niegten@ufl.adu (N. Jegten)
19 20	E-man addresses njagtap@un.edu (14. Jagtap).
20	SUPPLEMENTAL MATERIALS
22	
23	42 pages
24	
25	6 equations
26	11 / 11
27	11 tables
20	3 Figures
30	5 Tigures
31	
32	
33	
34	
35	
30 27	
38	
39	
40	
41	
42	
43	
44	
45 46	
40	

47 1.1 Analytical methods48

All samples were collected in triplicate, and the average and standard deviation of samples were 49 calculated. Error bars in the figures represent one standard deviation of the triplicate samples. 50 Samples were taken before and after each treatment process and analyzed. Samples that had 51 greater masses than what was added to the solution were corrected to equal the added mass in 52 solution. For example, K was never added during any treatment process yet some samples post 53 54 struvite precipitation had K masses greater than the initial amount. For these samples, the amount 55 of K post struvite precipitation was set equal to the amount of K pre struvite precipitation (initial). The pH was measured with an Accumet AB 15 pH meter, which was calibrated before 56 57 use with pH 4, 7, and 10 buffer solutions (Fisher Scientific). Conductivity was measured using Orion Star A215 conductivity meter, which was calibrated before use with increasing calibration 58 points of 1413µS cm⁻¹, 12900 µS cm⁻¹, and 100000 µS cm⁻¹. Total phosphate (TP) (as P) was 59 measured following Standard Method 4500P ascorbic acid method (EPA 356.3) using a Hitachi 60 U-2900 spectrophotometer at 880nm and a 1cm quartz cuvette.¹ Initial urine samples were 61 diluted by 1:1000 and post struvite samples were diluted by 1:200 for TP analysis. Increasing 62 calibration points of 0, 0.15, 0.30, 0.60, and 1.2 mg L⁻¹ as P were used and the coefficient of 63 determination (R²) was greater than 0.995. Inorganic cations (Mg²⁺, Na⁺, K⁺) were measured 64 65 using inductively coupled plasma (ICP) Optical Emission Spectrometer (Thermo Fisher iCap 6000 ICP-OES). Samples were acidified using 2% trace metal grade nitric acid and analyzed 66 using a standard calibration curve from 01mg/L to 100mg/L. Chloride and sulfate concentrations 67 were measured using ion chromatography (Dionex ICS-3000) and an increasing calibration 68 curve from 0.01 mg/L to 50mg/L. Samples for anion and cation analysis were diluted by 1:100. 69 To measure total ammonia nitrogen (TAN) as NH₄⁺ via flow injection analysis (Lachat's 70

71	QuikChem [®] 8500 Series 2 Flow Injection Analysis System), samples were diluted by 1:1000 and
72	acidified to pH < 2. Increasing calibration points of 1, 2.5, 5, 10, and 20 mg L^{-1} as N were used
73	and the coefficient of determination (R^2) was greater than 0.995.
74	Precision and accuracy of sample measurements were checked by measuring samples in
75	duplicate and calculating the relative percent difference between samples as well as using an
76	external known concentration solution and calculating the relative percentage difference between
77	the measured and known concentrations. Values were below 10%
78 79 80 81 82 83 84 85 86 87 88 89 90	1.2 TP concentration for samples containing MgCl -6H O
91 92	1.2 TP concentration for samples containing MgCl₂·6H₂O

Samples containing MgCl₂·6H₂O, post struvite, had TP values up to 0.001mg P /L which was 93 below the first calibration point of 0.15mg P/L (EPA 356.3). Therefore, concentrations of TP in 94 those samples were reported as being below 30mg/L (200*0.15=30). Samples containing 95 MgCl₂·6H₂O, post struvite, had residual magnesium (Mg) in the supernatant whereas samples 96 with MgO and MgCO₃ barely did. This suggests less than 30 mg P/L remained in samples 97 containing MgCl₂·6H₂O, post struvite. Since Mg was added at 10% excess of the P concentration 98 99 and the percent of excess magnesium ranged from 5.8-11.1%, it is likely that actual TP recovery 100 ranged from 94-100%, not 91-94%.

		Pre treatm	ent	Post treatm	ent
Urine solution	Mg precipitant	Initial TP (mmol P/L)	Mg addition (mmol/L)	Mg in solution (mmol/L)	Percent excess (%)
Synthetic	MgCl ₂ ·6H ₂ O	13.3	14.6	0.846	5.78
hydrolyzed	MgO	13.3	14.6	0.0602	0.411
no metabolites	MgCO ₃	13.3	14.6	0.0411	0.281
Synthetic	MgCl ₂ ·6H ₂ O	15.2	16.7	1.50	8.97
hydrolyzed	MgO	15.2	16.7	0.0849	0.508
metabolites	MgCO ₃	15.2	16.7	0.117	0.699
Real	MgCl ₂ ·6H ₂ O	11.1	12.2	1.36	11.1
hydrolyzed	MgO	11.1	12.2	0.0738	0.604
urine	MgCO ₃	11.1	12.2	0.106	0.866

2. Results and Discussion 103

104 2.1 Calculation of TAN recovery

105

The mass of NH₄⁺-N remaining in the urine post struvite precipitation and the sum of NH₄⁺-N 106

107 present in the stripping and absorption columns post ammonia stripping-acid absorption was

108 expected to be the same. However, this was not the case and the sum of NH₄⁺-N in the stripping

and absorption column for control samples (no pH and temperature adjustments) exceeded the 109

110 mass of NH₄⁺-N post struvite precipitation by approximately 45-60%. Due to the setup of the

experiment, no sources of additional NH₄⁺-N entering the system were identified. Therefore, the 111

% TAN recovered was calculated using Equation S1 (also located in the equations section). 112

Equation S1: TAN recovery efficiency was calculated as NH₄⁺-N using the equation 113

114

mg N in absorption column

115 $\overline{mg N \text{ in stripping column} + mg N \text{ in absorption column}}^{x \ 100}$

119 2.2. Discussion of condition pH 9.2, 70°C: Operational issues120

121 Although temperature had a greater effect on TAN recovery than pH, serious operational issues 122 could arise based on experimental observation. Operational issues such as excess foaming, 123 precipitation, and evaporation were observed when the sample was heated to 70°C. These 124 operational issues resulted in lower than expected TAN recovery and cross contamination of 125 potassium from the stripping column to absorption column. Since all of the stripping experiments 126 were done with the same volume (urine and sulfuric acid) and flow rate (1LPM for 3 h), increasing the volume of oil added to each sample was tried to reduce the excess foaming which 127 lead to cross contamination. This failed, as too much oil (> 5% of the sample volume) was 128 129 needed to slightly reduce the foaming. Therefore, reducing the flow rate to approximately 0.9 LMP was attempted to solve the operation issues described. Sample and acid volume, 130 131 experimental time, and volume of oil addition remain constant with previous ammonia stripping-132 acid absorption experiments. The reduction in flow rate most likely affected the TAN recovered, where <90% was recovered. 133 The reason for this experimental condition was only to compare the effect of pH and temperature 134 on TAN recovery by comparing conditions pH 9.2, 70°C, pH 9.2, 22°C, and pH 10.2, 22°C. 135 Therefore this condition was excluded from tables that reported potash purity (Table S11 and 136

- 137 S10) and the cost analysis of NPK recovery from 10,000L of urine (Table 4).
- 139
- 140
- 141
- 142

143 2.3 Discussion of increased Cl⁻ and SO₄²⁻ post ammonia stripping–acid absorption 144

145 This explanation corresponds to section 3.2 in the manuscript. The original sources of Cl⁻ and SO₄²⁻ in the synthetic urine solutions were NaCl, KCl, and Na₂SO₄. Post struvite precipitation, 146 147 MgCl₂·6H₂O was also a source of Cl⁻ and samples containing that Mg source contained higher Cl⁻ concentrations compared to the other samples. However, post ammonia stripping-acid 148 149 absorption, all of the samples that required NaOH to increase the pH showed the same degree of concentration increase in these anions. The cation (Mg²⁺, K⁺, Ca²⁺) concentration did not 150 increase but remained either constant or decreased. Since the increase of Cl⁻ and SO₄²⁻ was only 151 seen in samples that had NaOH added, contamination of NaOH was thought to be a reason. To 152 153 test this, condition pH 10.5, 22°C was done with deionized (DI) water and samples 154 were diluted 1:20. Due to the high buffering capacity of urine, all samples with pH>9.2 required 155 approximately equal g/L NaOH. Therefore, only this condition was tested with DI water. Results from these experiments showed an increase of approximately 0.098 mg/L Cl⁻ and SO₄²⁻ in DI 156 to 2 mg/L Cl⁻ and 5 mg/L SO₄²⁻. The percent difference of Cl⁻ and SO₄²⁻ in DI water and 157 experimental samples was similar to the increase seen amongst samples that required 158 NaOH. Therefore, the increase of unexpected Cl⁻ and SO₄²⁻ in solution is attributed to 159 experimental error. 160 161 162 163 164 165

Variation	Cost	reference
MgCl ₂ ·6H ₂ O	150 (\$/metric ton)	www.alibaba.com (2017)
MgO	350(\$/metric ton)	www.alibaba.com (2017)
MgCO ₃	500(\$/metric ton)	www.alibaba.com (2017)
NaOH	400(\$/metric ton)	www.alibaba.com (2017)
КОН	480 (\$/metric ton)	www.alibaba.com (2018)
H_2SO_4 (98%)	0.46 (\$/L)	www.alibaba.com (2017)
Struvite	350 (\$/metric ton)	www.alibaba.com (2017)
Ammonium sulfate	314 (\$/metric ton)	Agricultural Marketing Service. Data from December 14 2017, North Carolina prices.
Potash	336 (\$/metric ton)	Agricultural Marketing Service. Data from December 14 2017, North Carolina prices.
Arizona electricity cost	0.11 (\$/kWh)	https://www.eia.gov data used: September 2016 for all sectors

167 2.4 Cost analysis: reference and price of each variation

Equations:

Equation S1: TAN recovery efficiency was calculated as NH_4^+ -N using the equation. 172

172	
	mg N in absorption column
173	$\frac{1}{mg N}$ in stripping column + mg N in absorption column
174	
175	
176	Equation S2 : Percent N (w/w) in the liquid ammonium sulfate product.
177	
178	
	$\frac{g N}{1} \frac{1 cm^3 solution}{x} \frac{1 mL}{x} \frac{100 g solution}{x} = \% N (w/w)$
179	30 mL solution 1.05 g solution 1 cm3 1
100	
180	
101	
191	where: solution is live sulfuric acid solution
100	

184 Equation S3: Maximum mass of N (g) that can be absorbed using 30mL of $1M H_2SO_4$ solution. $\frac{1 \operatorname{\textit{mol}} H2SO4}{1L} x \frac{30 \operatorname{\textit{mL}} solution}{1} x \frac{1 \operatorname{\textit{L}}}{1000 \operatorname{\textit{mL}}} x \frac{1 \operatorname{\textit{mol}} (NH4)2SO4}{1 \operatorname{\textit{mol}} H2SO4} x \frac{2 \operatorname{\textit{mol}} NH4}{1 \operatorname{\textit{mol}} (NH4)2SO4} x \frac{1 \operatorname{\textit{mol}} NH4}{1 \operatorname{\textit{mol}} NH4} x \frac{1 \operatorname{mol} NH4}{1 \operatorname{\textit{mol}} NH4} x \frac{1 \operatorname{\textit{mol}} NH4}{1 \operatorname{mol} NH4} x \frac{1 \operatorname{mol} NH4}{1 \operatorname{mo$ $\frac{14 g N}{1 mol N} = 0.84 g N$ Equation S4: Maximum % N(w/w) that can be in the liquid ammonium sulfate product using 30mL of 1M H₂SO₄ solution. $\frac{0.84 \text{ g N}}{30 \text{ mL solution}} x \frac{1 \text{ cm3 solution}}{1.05 \text{ g solution}} x \frac{1 \text{ mL}}{1 \text{ cm3}} x \frac{100 \text{ g solution}}{1} = 2.67\%$ Equation S5: g N/L needed to produce commercial liquid ammonium sulfate fertilizer (8-0-0-9S). Density of 8-0-0-9S (8% N liquid fertilizer) is 1.2g/cm^{3.2} $\frac{8 g N}{100g \ solution} x \frac{1.2 \ g \ solution}{1 \ cm3} x \frac{1000 \ cm3}{1 \ L} = \frac{96 \ g \ N}{L}$ Equation S6: : Volume of urine and concentration of sulfuric acid needed to obtain an 200 ammonium sulfate product that is equivalent to market liquid ammonium sulfate fertilizers (8 % 201 N). (a) Assuming 5 g N L⁻¹ urine and 90% TAN recovery, the mass of N/L urine is 4.5 g/L $\frac{96 g N}{1 L} x \frac{1 L urine}{4.5 g N} = 21.33 L urine$ (b) Concentration of H_2SO_4 needed to produce liquid ammonium sulfate containing 8% N $\frac{96 g N}{1 L} x \frac{1 mol N}{14 g N} x \frac{1 mol H2SO4}{2 mol N} = \frac{3.43 mol H2SO4}{L}$ 220 Tables:

- 222 Table S1. Economic value of nutrients recovered from 10,000L of treated urine as fertilizer
- 223 products assuming 100% recovery

Fertilizer	Cost (\$/metric ton) ^a	Nutrient	Nutrient in fertilizer (% w/w)	Cost (\$/metric ton nutrient)	Nutrient concentration (mg/L) ^b	Economic value (\$ nutrient/10,000 L urine)
Potash	336	K	51.5	173	1560	2.70
Ammonium sulfate	314	Ν	21.0	65.9	7000	4.62
Struvite	350	Р	12.6	44.1	434	0.19

²²⁵ ^aBulk fertilizer prices for potash and ammonium sulfate obtained from Agricultural Marketing Service.

226 Data from December 14 2017, North Carolina prices. Struvite fertilizer prices obtained from Alibaba.com

²²⁷ ^bNutrient concentrations are based on the synthetic recipe used in the study (Table S2)

228

229 Table S2. Synthetic urine and synthetic urine with metabolites recipe in 1L 18.2 M Ω -cm ultra-

230 pure water.

23	1
25	T

Chemical	Amount [g]	[mL]
NaCl	3.51	• •
Na ₂ SO ₄	2.13	
KCI	2.98	
NH₄OH		15.9
NaH ₂ PO ₄ –P	1.68	
NH₄HCO ₃	19.8	
Citrate ^a	0.478	
Creatinine ^a	1.39	
Glycine ^a	0.0928	
Hippurate ^a	0.502	
L-Cysteine ^a	0.0976	
Taurine ^a	0.124	
^a added for urine solut	ion with metabolites	

232 233

- 234
- 235
- 236 237
- 238
- 239

240

241 Tables S3. a-e. All ANOVA two way with replication data analysis done with concentration or

242 mass values

a. ANOVA two way statistical analysis with replication (α =0.05) for TP recovery

ing urine solutions ⁄ing Mg sources ′ery (mg N) in
ing urine solutions ying Mg sources 'ery (mg N) in
ing urine solutions ying Mg sources 'ery (mg N) in
ying Mg sources yery (mg N) in
ery (mg N) in
5 (0)
ving ammonia
ying urine
ery (mg N) in
ying ammonia
ying ammonia
ying ammonia ying magnesium
ying ammonia ying magnesium (mg K) in the
ying ammonia ying magnesium (mg K) in the ammonia
ying ammonia ying magnesium (mg K) in the ammonia g magnesium
ying ammonia ying magnesium (mg K) in the ammonia g magnesium
ying ammonia ying magnesium (mg K) in the ammonia g magnesium
ying ammonia ying magnesium (mg K) in the ammonia g magnesium
ying ammonia ying magnesium (mg K) in the ammonia g magnesium (mg K) in the
ying ammonia ying magnesium (mg K) in the ammonia g magnesium (mg K) in the
^v ing yir

Mg source	Nutrient	p-value factor iª	p-value factor ii ^b
MgCl ₂ ·6H ₂ O	K	2.28E-13	2.71E-13
MgO	K	8.39E-15	2.46E-14
MgCO ₃	K	7.71E-15	3.88E-13

²⁷⁷ ^aFactor i. Conducted for statistical significance between K recovery and varying ammonia stripping–acid

278 conditions

279 bFactor ii. Conducted for statistical significance between K recovery and varying urine solutions

- 282 Table S4. Results of preliminary Mg²⁺ solubility experiments showing percentage Mg dissolved
- 283 in varying ionic strength solutions.

		Solid Mg dose ^a (mmol/L)		Mg in solu	ition (mmol/L)
Maleoureo	Solubility	DI water	synthetic urine	DI water	synthetic urine
My source	(g/100mL)		with no P		with no P
MgCl ₂ ·6H ₂ O	52.9	15.4	15.4	15.3	17.0
MgO	0.009	15.4	15.4	0.579	16.2
MgCO ₃	0.0139	15.4	15.4	1.31	4.21

285 a 1.1:1 Mg:P ratio. Initial concentration of TP in synthetic urine was approximately 14 mmol/L

Table S5. Economic cost analysis for struvite production from 10,000L of real urine.

Mg source	\$/mol Mgª	Consumed cost (\$)	\$/mol P recovered ^c	Product ^b (\$)	Net profit (\$)
MgCl ₂ ·6H ₂ O	0.0305	3.73	3.02	8.72	4.99
MgO	0.0141	1.73	1.93	7.44	5.72
MgCO ₃	0.0422	5.15	4.93	8.80	3.65

289 ^a Cost (\$/ton) of each magnesium source: MgCl₂·6H₂O (\$150), MgO (\$350), MgCO₃ (\$500)

290 ^b \$/ton of struvite was \$350

291 Struvite and magnesium prices obtained from <u>www.alibaba.com</u>.

²⁹² Based on experimental TP recovery of 91%, 66%, and 77% for MgCl₂·6H₂O, MgO, and MgCO₃

293 respectively

Table S6. Change in pH from each magnesium source during struvite precipitation

Urine solution	Mg source	Pre struvite precipitation	After Mg addition	Post struvite precipitation
Synthetia	MgCl ₂ ·6H ₂ O	9.2	9.3	9.3
Synthetic	MgO	9.2	9.4	9.3
unne	MgCO₃	9.2	9.4	9.3
Synthetic	MgCl ₂ ·6H ₂ O	9.2	9.1	9.1
urine with	MgO	9.2	9.2	9.2
metabolites	MgCO ₃	9.2	9.2	9.2
	MgCl ₂ ·6H ₂ O	9.2	8.9	8.9
Real urine	MgO	9.2	9.0	9.0
	MgCO ₃	9.2	9.0	9.0

Table S7. Base (NaOH) addition (mL NaOH/100 mL urine) required for ammonia stripping–
acid absorption samples

510					
	Urine solution	Condition	MgCl ₂ ·6H ₂ O	MgO	MgCO ₃
		pH 9.6, 55°C	1.3	1.4	1.2
		pH 10, 40°C	2.4	2.3	2.4
	Real urine	pH 10.5, 22°C	4.2	4.1	3.7
		pH 9.2, 70°C	0.0	0.0	0.0
		pH 9.2, 22°C	0.0	0.0	0.0
		pH 9.6, 55°C	1.0	1.1	1.0
	Synthetic	pH 10, 40°C	2.3	2.0	2.4
	urine with	pH 10.5, 22°C	3.7	3.5	3.7
	metabolites	pH 9.2, 70°C	0.0	0.0	0.0
		pH 9.2, 22°C	0.0	0.0	0.0
		pH 9.6, 55°C	1.2	1.1	1.0
	O: we the action	pH 10, 40°C	2.3	2.1	2.4
	Synthetic	pH 10.5, 22°C	3.5	3.4	3.7
	unne	pH 9.2, 70°C	0.0	0.0	0.0
		pH 9.2, 22°C	0.0	0.0	0.0
11 12 13 14 15 16 17 18 19 20 21 22					
3	Table S8. Con	nsumed costs of p	producing amm	ionium sulfa	ate from 10,0
,4	Condition ^a	NaOH	H₂SO₄	Energy	Total

	consumed cost (\$)	consumed costs (\$)	consumed cost ^b (\$)	consumed costs (\$)
pH 9.6, 55°C	20.80	40.13	42.35	103.3
pH 10, 40°C	38.40	44.10	23.10	105.6
pH 10.5, 22°C	67.20	27.34	0.0	94.54
pH 9.2 70C	0	38.47	61.60	99.97
pH 9.2, 22°C	0	13.67	0.0	13.67

- 325 ^aMgCl₂·6H₂O was used as Mg source for struvite precipitation
- 326 ^bEnergy consumed costs defined as energy transferred as heat

329 Table S9. Average pH of samples after ammonia stripping–acid absorption experiments

Urine solution	Mg source	Post struvite precipitation	рН 9.6, 55°С	pH 10, 40°C	pH 10.5, 22°C	рН 9.2, 70°С	pH 9.2, 22°C
	MgCl ₂ ·6H ₂ O	8.93	9.57	9.91	10.41	9.22	nm
Real urine	MgO	9.02	9.52	9.92	10.03	9.13	9.18
	MgCO ₃	9.02	9.53	9.99	10.07	9.17	9.21
Synthetic	MgCl ₂ ·6H ₂ O	9.12	9.56	9.96	10.44	9.21	9.20
urine with	MgO	9.21	9.57	9.95	10.41	9.18	9.19
metabolites	MgCO ₃	9.18	9.59	10.00	9.92	9.19	9.20
Synthetic urine	MgCl ₂ ·6H ₂ O	9.25	9.57	9.95	10.44	9.22	9.19
	MgO	9.54	9.54	9.89	10.04	9.23	9.18
	MgCO ₃	9.30	9.46	9.93	10.16	9.19	9.18

350 Table S10. Mass of potassium (K) recovered in samples post ammonia stripping-acid absorption for each

351 Mg source.

Stripping column Absorption column Unaccounted K

Mg source	Urine solution	Initial Kª	Condition	Avg. (mg) ^b	R _k ^c	Avg. (mg) ^b	R _k c	Avg. (mg) ^d	R _k ^c	
	(I)		pH 9.6, 55°C	77.6	0.739	3.61	0.0344	23.8	0.226	
	urin	105	pH 10 temp 40	87.0	0.829	0.300	0.00286	17.7	0.168	
	teal	105	pH 10.5 temp 22	58.7	0.559	3.75	0.0357	42.6	0.406	
	Ľ.		pH 9.2, 22°C	106	1.01	0.456	0.00435	-1.02	-0.00974	
0	S		pH 9.6, 55°C	115	0.733	3.69	0.0234	38.3	0.243	
6H ₂ (vith olite	450	pH 10 temp 40	120	0.760	4.95	0.0314	32.9	0.209	
gCl ₂ .	gCl₂ [.] Synth irine etab	158	pH 10.5 temp 22	96.9	0.615	4.83	0.0307	55.8	0.354	
ž	00 J E		pH 9.2, 22°C	148	0.940	0.300	0.00190	9.13	0.0580	
			pH 9.6, 55°C	103	0.698	3.80	0.0259	40.6	0.276	
	netic ne		pH 10 temp 40	110	0.751	4.11	0.0279	32.6	0.222	
	Synth urit	147	pH 10.5 temp 22	104	0.704	5.89	0.0401	37.6	0.256	
	0)		pH 9.2, 22°C	147	0.999	0.300	0.00204	-0.20	-0.00136	
	Ð		pH 9.6, 55°C	65.7	0.635	2.33	0.0225	35.5	0.343	
	urin	104	pH 10 temp 40	91.4	0.883	5.66	0.0546	6.45	0.0624	
	teal		pH 10.5 temp 22	64.6	0.624	3.45	0.0333	35.4	0.342	
	Ŕ		pH 9.2, 22°C	102	0.982	0.300	0.00290	1.54	0.0148	
	Synthetic urine with netabolites	156	pH 9.6, 55°C	112	0.717	2.49	0.0160	41.5	0.267	
<u> </u>			pH 10 temp 40	117	0.748	3.45	0.0221	35.8	0.230	
ž			pH 10.5 temp 22	102	0.652	2.56	0.0164	51.7	0.332	
	2 2		pH 9.2, 22°C	146	0.937	0.300	0.00193	9.57	0.0614	
	thetic ine		pH 9.6, 55°C	96.6	0.656	2.56	0.0174	48.0	0.326	
		147	pH 10 temp 40	106	0.720	3.93	0.0267	37.2	0.253	
	Syn		pH 10.5 temp 22	94.7	0.643	4.98	0.0339	47.5	0.323	
			pH 9.2, 22°C	148	1.00	0.300	0.00204	-1.03	-0.00702	
	Э		pH 9.6, 55°C	64.2	0.607	2.97	0.0281	38.5	0.365	
	urir	106	pH 10 temp 40	84.3	0.798	5.05	0.0478	16.3	0.155	
	Real	,	pH 10.5 temp 22	67.7	0.641	3.22	0.0304	34.7	0.328	
	<u> </u>		pH 9.2, 22°C	107	1.01	0.310	0.00293	-1.31	-0.0124	
	счs		pH 9.6, 55°C	101	0.637	3.35	0.0212	54.0	0.342	
MgCO ₃	Synthetic urine with metabolite	158	pH 10 temp 40	107	0.680	4.81	0.0304	45.9	0.290	
		100	pH 10.5 temp 22	102	0.645	6.19	0.0391	49.9	0.316	
		E	pH 9.2, 22°C	148	0.933	0.368	0.0023	10.3	0.0649	
	~		pH 9.6, 55°C	93.9	0.641	4.17	0.0285	48.4	0.330	
	hetic ne	4.40	pH 10 temp 40	106	0.722	3.06	0.0209	37.7	0.257	
	Synth urii	Syntt urii	140	pH 10.5 temp 22	98.2	0.670	3.14	0.0215	45.1	0.308
			pH 9.2, 22°C	145	0.992	0.324	0.0022	0.910	0.00621	

353	^a Data taken from samples post struvite precipitation. K mass calculated as (mg/L K) * (0.1
354	L) and reported as mg in 100mL of urine.
355	^b K mass calculated as $(mg/L K)$ * (volume in column after 3h experiment time)
356	$^{\circ}R_{K}$ calculated as (average mg K in column/initial mg K)
357	^d Average mass of K that was unaccounted for was calculated as ((mg K initial- (mg K in
358	stripping column $+$ mg K in absorption column))
359	suppling column + ing is in accorption column))
360	
261	
262	
302	
303	
364	
365	
366	
367	
368	
369	
370	
371	
372	
373	
374	
375	
376	
377	
378	
379	
380	
381	
382	
383	
384	
385	
386	
207	
201	
200	
200	
390	
391	
392	
393	
394	
395	
396	
397	Table S11. Composition ($\%$ w/w) of potash product via evaporation
398	

Urine solution	Condition ^b	Mg source	Added NaOH (g)	K⁺	aCl-	^a SO ₄ ²⁻	Na⁺
	pH 9.6, 55°C	MgCl₂·6H₂O MgO MgCO₃	0.52 0.56 0.48	4.4 4.0 3.7	12.0 8.0 7.8	6.2 6.1 6.6	31 32 27
urine	pH 10, 40°C	MgCl₂·6H₂O MgO MgCO₃	0.96 0.92 0.96	5.0 5.1 4.9	12 7.5 7.7	6.2 5.7 6.5	39 38 35
Real	pH 10.5, 22°C	MgCl₂·6H₂O MgO MgCO ₃	1.7 1.6 1.5	2.6 3.4 3.5	11 7 7	6.0 5.6 6.3	40 48 47
	pH 9.2, 22°C	MgCl ₂ ·6H ₂ O MgO MgCO ₃	0 0 0	6.5 6.6 6.6	13 8.5 8.3	6.6 6.5 7.0	8.5 7.9 7.7
tt.	рН 9.6, 55°С	MgCl ₂ ·6H ₂ O MgO MgCO ₃	0.40 0.44 0.40	6.6 6.7 5.9	21 16 16	6.9 7.3 7.1	29 31 27
urine wi olites	pH 10, 40°C	MgCl ₂ ·6H ₂ O MgO MgCO ₃	0.92 0.80 0.96	7.1 6.7 6.1	21 15 15	7.2 7.0 7.0	43 40 40
nthetic metab	pH 10.5, 22°C	MgCl ₂ ·6H ₂ O MgO MgCO ₃	1.5 1.4 1.5	5.3 5.5 5.5	20 15 15	6.9 6.9 6.8	49 51 48
Syr	рН 9.2, 22°С	MgCl ₂ ·6H ₂ O MgO MgCO ₃	0 0 0	8.9 6.5 9.2	22 17 17	7.3 7.6 7.7	14 8.0 14
	рН 9.6, 55°С	MgCl ₂ ·6H ₂ O MgO MgCO ₃	0.48 0.44 0.4	6.7 5.5 5.2	22 15 15	7.8 6.8 6.6	28 25 25
c urine	pH 10, 40°C	MgCl ₂ ·6H ₂ O MgO MgCO ₃	0.92 0.84 0.96	7.4 6.2 6.6	23 15 16	8.1 7.0 7.4	45 40 45
Syntheti	pH 10.5, 22°C	MgCl ₂ ·6H ₂ O MgO MgCO ₃	1.4 1.4 1.5	5.8 5.2 5.2	20 15 14	7.0 6.8 6.5	51 49 47
	pH 9.2, 22°C	MgCl ₂ ·6H ₂ O MgO MgCO ₃	0 0 0	9.3 9.2 9.1	22 16 16	7.6 7.5 7.4	15 15 14

 ${}^{a}Cl^{-}$ and SO_{4}^{2-} values taken from control samples (explained in ESI section 2.3)

400 ^bCondition pH 9.2, 70°C was not included because of operation issues (explained in ESI section 2.2)

- 406 Figures:

408 Fig. S1. X-ray diffraction patterns of solid precipitates from synthetic and real hydrolyzed urine by Mg^{2+}

409 addition. X-axis is two theta (degree) and y-axis is intensity (counts).

410411 A. XRD for Real urine samples

420421 B. XRD for Synthetic urine with metabolites samples

- 443 Fig. S2. X-ray diffraction patterns of synthetic and real hydrolyzed urine post evaporation.
- 444 Previous ammonia stripping–acid absorption condition was pH 10 40°C. Patterns presented are
- 445 representative samples of triplicates. X-axis is two theta (degree) and y-axis is intensity (counts).

Figure 2 XRD further explanation:

Characterizing the potash product via XRD was not sufficient. Eight XRD patterns are included below to give an example of identified and unidentified peaks. Although a significant

portion of peaks could not be identified, KCl and NaCl consistently corresponds with 10% of the

peaks followed by NaHCO3 and other sodium and carbonate species, which corresponds with 20% of the defined peaks.

- 473 Figure 3. Mass of potassium in (a) real urine, (b) synthetic urine with metabolites, and (c)
- 474 synthetic urine after each treatment process. Treatment processes are reported on the x-axis
- 475 labels: Pre struvite precipitation (I), post struvite precipitation (SP), and post ammonia stripping
- 476 and acid absorption (AS). A volume of 100mL (the experimental volume used for ammonia
- 477 stripping and acid absorption experiments was used to calculate the mass of K for the treatment 478 processes of pre struvite precipitation (I) and post struvite precipitation (SP). The volume
- 478 processes of pre-structure precipitation (3) and post structure precipitation (3). The volume 479 remaining in the stripping column post AS was used to calculate the mass of K for that process.
- 480 Each treatment process condition is reported in the legend. All measured data, except data for pre
- 481 struvite precipitation, are values of triplicate samples with error bars showing one standard
- 482 deviation.

- 503
- 504
- 505 1. U. E. P. Agency, *Methods for chemical analysis of water and wastes*, EPA-600/4-79-
- 506 02O, Washington, DC, 1979.
- 507 2. D. F. Leikam, *Fluid Fertilizer Foundation*, 2016.
- 508