Supplementary File for:

Biofilm Bacterial Community Transition under Water Supply Quality Changes in Drinking Water Distribution Systems

Xu Ma^a, Guangming Zhang^{a*}, Guiwei Li^{b,c}, Yunjie Wan^b, Huifang Sun^d, Haibo Wang^b, Baoyou Shi^{b,c*}

^aSchool of Environment & Natural Resource, Renmin University of China, Beijing, 100872, China.

^bKey Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
^cUniversity of Chinese Academy of Sciences, Beijing 100049, China
^dInstitute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030006, China

CONTENTS

- **TABLE S1** Pipelines information
- TABLES2
 Supply water quality parameter adjustment of different phase in experimental operation

TABLE S3 Primer design of all samples

TABLE S4 Diversity statistics for P biofilm and P1 biofilm samples

- **TABLE S5** Diversity statistics for all samples
- **TABLE S6** relative abundance of differences species (the top 15 abundance species at

genus level) in each pipe biofilm (%)

- TABLE S7 ANOSIM statistics for P1-P6 biofilm samples
- **TABLE S8** Relative abundance of potential corrosive bacteria at genus level in

 biofilms with two different water sources (%)
- **TABLE S9** COG data of different samples
- **TABLE S10** Relative abundance of potential opportunistic pathogens at genus level

 in biofilms with two different water sources (%)
- FIG S1 Simulated drinking water distribution systems
- FIG S2 Bacterial community of P and P1 biofilm of the 4 systems
- FIG S3 Samples distances heatmap on OTU level
- FIG S4 Wilcoxon rank-sum test bar plot on genus level among P1 and P2, P3, P4, P5, P6 biofilm
- FIG S5 Distance calculated on genus level on each sample groups

r r				
	DX	QH	SLJ	HJL
Pipe diameter	DN150	DN100	DN100	DN100
Pipe length	30 m	20 m	20 m	12 m
Pipe age	> 15 a	>15 a	> 15 a	> 15 a
Pipe material	unlined cast	unlined cast	unlined cast	unlined cast
	iron	iron	iron	iron
Water supply histories	GW ^a	SW^b	BW^{c}	GW
Flush velocity (m ³ /h)	20	15	15	15
Water flow (L/min)	0.400	0.121	0.121	0.090

TABLE S1 Pipelines information

^aGW: groundwater

^bSW: surface water

^cBW: blend water

TREE 52 Supply water quarty parameter adjustment of american phases										
Phase	Adjustment parameter	Operation period/d	Chemicals added							
P1	original supply water ^a	36								
P2	SO ₄ ²⁻	10	Na_2SO_4							
P3	Cl-	9	NaCl							
P4	HCO ₃ -	12	NaHCO ₃							
P5	pН	12	NaOH							
P6	Ca^{2+} and HCO_3^{-}	11	Ca(OH) ₂ and CO ₂							

TABLE S2 Supply water quality parameter adjustment of different phases

^aOriginal supply water: treated water from a local water treatment plant.

Sample	Primer sequence	Region	Length	Sequencing platform	Reference
	338F: 5'-				
Р	ACTCCTACGGGAGGCAGCAG-3'	V2 V4	160hn	DE200	Xu, et al.,
biofilm	806R: 5'-	V 3-V 4	4080p	PE300	2016
	GGACTACHVGGGTWTCTAAT-3'				
P1-P6	515F: 5'-	VA V5	202hn	DE250	Yusoff, et
biofilm	GTGCCAGCMGCCGCGG-3'	v 4- v 3	3920p	FE230	al., 2013
	907R: 5'-				
	CCGTCAATTCMTTTRAGTTT-3'				

TABLE S3 Primer design of all samples

Note: The reason for using different primers was that the samples were collected and analyzed at different time and different places although they were treated by the similar methods (attention was paid to avoid possible unreasonable interpretation associated to different primers).

References:

1. Xu N, Tan G, Wang H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8.

2. Yusoff M Z M, Hu A, Feng C, et al. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application [J]. Bioresource technology, 2013, 145: 90-96.

		0.97ª							
Sample	reads	OTU	Ace	Chao 1	Coverage	Shannon	Simpson	Heip	
DX_P	11052	701	758	752	0.990	4.72	0.03	0.16	
HJL_P	11052	417	423	430	0.998	5.20	0.01	0.44	
QH_P	11052	325	447	401	0.990	2.47	0.23	0.03	
SLJ_P	11052	516	535	530	0.996	3.69	0.16	0.08	
DX_P1	11052	125	149	144	0.997	2.73	0.12	0.12	
HJL_P1	11052	186	202	201	0.997	3.18	0.12	0.12	
QH_P1	11052	202	219	219	0.997	3.19	0.11	0.12	
SLJ_P1	11052	197	211	215	0.998	3.18	0.11	0.12	

TABLE S4 Diversity statistics for P biofilm and P1 biofilm samples

^a0.97: equivalent to 97% similarity

Samula		0.97ª								
ID	reads	OTU	Ace	Chao 1	Coverage	Shannon	Simpson	Heip		
P1	46321	426	462	464	0.999	3.34	0.10	0.06		
P2	46321	407	482	494	0.998	3.80	0.05	0.11		
P3	46321	454	530	522	0.998	4.10	0.03	0.13		
P4	46321	392	430	422	0.999	3.98	0.04	0.13		
Р5	46321	289	375	370	0.998	1.06	0.70	0.01		
P6	46321	375	432	467.5	0.998	3.40	0.08	0.08		

TABLE S5 Diversity statistics for all samples

^a0.97: equivalent to 97% similarity

Genus		P1	P2	P3	P4	P5	P6
Rhizobacter		28.26	10.15				
Sphingomonas		8.15	2.90				
Rhizobacter		28.26		9.68			
Parvularcula		0.02		4.97			
Rhizobacter		28.26			3.40		
Sphingobium		0.38			11.56		
Phreatobacter		0.88			9.38		
Rhodobacter		6.02			1.91		
Hyphomicrobium		6.44			0.38		
Sphingopyxis		5.16			0.37		
Burkholderia		0				83.53	
Rhizobacter		28.26				0.07	
Sphingomonas		8.15				0.25	
Porphyrobacter		7.53				0.55	
Hyphomicrobium		6.44				0.17	
Rhodobacter		6.02				0.65	
Sphingopyxis		5.16				0.12	
Bosea		1.75				0.11	
Bradyrhizobium		0.37				1.60	
Burkholderia		0					18.51
Sporosarcina		0.04					6.10
*The	blank		cells		mean		"0".

TABLE S6 Relative abundance of differences species (the top 15 abundance species at genus level) in each pipe biofilm $(\%)^*$

TABLE S7 ANOSIM statistics for P1-P6 biofilm samples

Method	Statistic	<i>p</i> value	Permutation_number
ANOSIM	0.8891	0.001	999

TABLE S8 Relative abundance of potential corrosive bacteria at genus level in biofilms with two different water sources (%)

		Р				P1			
	Genus	DX_	QH_	SLLP	HJL_	DX_P	QH_	SLJ_	HJL_
		Р	Р	SLJ_I	Р	1	P1	P1	P1
IOB	Acidovorax	0.072	0.018	0.127	0.217	0	0	0	0
	Bradyrhizob ium	0.968	0.010	0.299	0.416	0.027	0.371	0.398	0.624
	Aquabacteri um	1.692	0.271	0.416	2.226	0	0	0	0
	Sediminibac terium	0.009	0	0.109	0.407	0.009	0.389	0.118	0.172
	Sideroxydan s	2.172	0.036	0.145	0	0.027	0.063	0.036	0.181
IRB	Bacillus	1.837	1.629	1.004	0.090	0.072	0.407	0.145	0.244
	Geothrix	0.018	0.036	0.054	0	0	0.036	0.072	0.018
	Pseudomon as	0.127	0.081	0.986	1.773	0.036	0.072	0.009	0.172
SOB	Sulfuricella	0.299	0.081	0	0	0	0	0	0
	Thiobacillus	0	0	0	0	0.009	0.389	0.226	0
SRB	Desulfovibri o	0.253	0.136	0.072	0	0	0.054	0	0

	P1 (%)	P2 (%)	P3 (%)	P4 (%)	P5 (%)	P6 (%)	Description
COG 0175	0.083	0.069	0.07	0.077	0.047	0.057	Reduction of activated sulfate into sulfite
COG 4114	0.0004	0.0005	0.0007	0.00003	0.014	0.011	ferric iron reductase

 TABLE S9 COG data of different samples

TABLE S10 Relative abundance of potential opportunistic pathogens at genus level in biofilms with two different water sources (%)

	Р				P1			
Genus	DX_P	QH_P	SLJ_P	HJL_ P	DX_P 1	QH_P1	SLJ_P 1	HJL_P 1
Acinetoba cter	0.344	0.452	2.117	11.039	0	0.054	0.027	0.009
Pseudomo nas	0.127	0.081	0.986	1.773	0.036	0.072	0.009	0.172
Mycobact erium	7.818	1.077	0.814	2.018	0.163	0.308	0.335	0.733
Ralstonia	1.321	0.452	0.226	1.077	0.271	0.217	0.109	0.525
Kocuria	0.172	43.739	0.516	0.443	0	0	0	0

FIG S1 Simulated distribution systems

(b) genus

FIG S2 Bacterial community of P and P1 biofilms of the 4 systems

FIG S3 Samples distances heatmap at OTU level

P1

P1 P4

P-value(fdr)

P-value(fdr

0.03038 0.1465

0.03038

0.665

0.1939

0.4705

0.1124

0.03038

0.665

0.4705

0.4705

0.1939

0.665

0.1124

10 15 20

1

95% confidence intervals - 1 -

ė

⊢**⊖**

HAH

e

0

Difference between proportions(%)

5

0

-25 -20 -15 -10 -5

а

95% confidence intervals

b

FIG S4 Wilcoxon rank-sum test bar plot on Genus level among P1 and P2, P3, P4, P5, P6 biofilm

There were two significantly different species (*Rhizobacter*, *Sphingomonas*) (only display a clear classification status of the species, the same below) between pipe wall biofilm P1 and P2 (Fig. S5a). Several *Rhizobacter* have been found in biofilms of polluted rivers ¹ and most remain uncultured so far. The relative abundance of *Rhizobacter* has a different degree of reduced in high SO_4^{2-} , Cl⁻, HCO₃⁻ supply water and disappeared under high pH supply water. *Sphingomonas* isolated from many different land and water habitats, are widely distributed in natureas well as in certain toxic environment. Many *Sphingomonas* have been isolated from environments contaminated with toxic compounds, where they display the ability to utilize the contaminants as nutrients .² The relative abundance of *Sphingomonas* of pipe wall biofilm decreased when increasing the SO_4^{2-} of supply water, correspond with the relative abundance of *Sphingomonas* of tap water is also decreased. There were two significantly different species, *Rhizobacter* and *Parvularcula*, between pipe wall

biofilm P1 and P3 (Fig. S5b). Parvularcula mainly were isolated from the seawater,³ the Cl⁻ may be has a positive effect on it. There were six significant differences species (Rhizobacter, Sphingobium, Phreatobacter, Rhodobacter, Hyphomicrobium, Sphingopyxis) between pipe wall biofilm P1 and P4 (Fig. S5c). And there were nine significantly different species (Burkholderia, Rhizobacter, Sphingomonas, Porphyrobacter, Hyphomicrobium, *Rhodobacter*, Sphingopyxis, Bosea, Bradyrhizobium) between pipe wall biofilm P1 and P5 (Fig. S5d). After increasing pH of supply water, most of bacteria (such as Rhizobacter, Sphingomonas, Porphyrobacter, Hyphomicrobium, Rhodobacter, Sphingopyxis, Bosea) were disappear except Burkholderia. This result indicated that pH had a significant impact on bacterial community structure. There were two significantly different species (Burkholderia, Sporosarcina) between pipe wall biofilm P1 and P6 (Fig. S5e). It is noteworthy that *Burkholderia* is known as a opportunistic pathogen whose pathogenic members include Burkholderia cepacia, an important pathogen of pulmonary infections in people with cystic fibrosis .⁴

FIG S5 Distances calculated on genus level on each sample group

1. I. H. M. Brümmer, A. Felske and I. WagnerDöbler, Diversity and Seasonal Variability of β-Proteobacteria in Biofilms of Polluted Rivers: Analysis by Temperature Gradient Gel Electrophoresis and Cloning, *Applied & Environmental Microbiology*, 2003, **69** (8), 4463-4473.

2. K. Nilgiriwala, A. Alahari and A. Rao, Sk, Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp strain BSAR-1 for bioprecipitation of uranium from alkaline solutions, *Applied & Environmental Microbiology*, 2008, **74** (17), 5516-5523.

3. X. Q. Zhang, Y. H. Wu, X. Zhou, X. Zhang, X. W. Xu and M. Wu, Parvularcula flava sp. nov., an alphaproteobacterium isolated from surface seawater of the South China Sea, *International Journal of Systematic & Evolutionary Microbiology*, 2016, **66** (9).

4. D. E. Woods and P. A. Sokol, The Genus Burkholderia, Springer New York, 2006.