1 Supporting Information (SI):

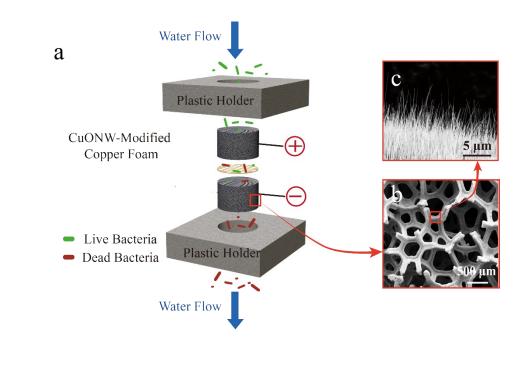
2 Impact of Water Quality Parameters on Bacteria Inactivation

3 by Low-Voltage Electroporation: Mechanism and Control †

4 Zheng-Yang Huo^{ab}, Guo-Qiang Li^a, Tong Yu^a, Yun Lu^a, Hao Sun^a, Yin-Hu

5 Wu^a, Cecilia Yu^b, Xing Xie^{*b}, and Hong-Ying Hu^{*ac}

⁶ ^aEnvironmental Simulation and Pollution Control State Key Joint Laboratory, State
⁷ Environmental Protection Key Laboratory of Microorganism Application and Risk Control
⁸ (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China. E⁹ mail: hyhu@tsinghua.edu.cn; Tel: +86-10-6279-4005.

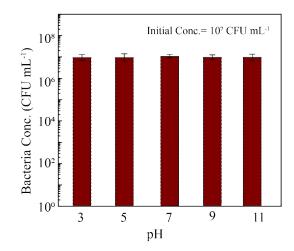

10 bSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,

- 11 Georgia 30332, United States. E-mail: xing.xie@ce.gatech.edu; Tel: +1-404-894-9723.
- ¹² ^cShenzhen Environmental Science and New Energy Technology Engineering
 ¹³ Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.

14

15 * Corresponding author:

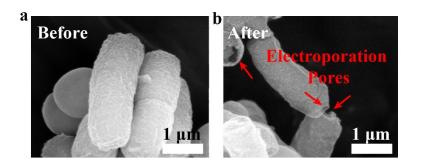
- 16 Xing Xie: E-mail: xing.xie@ce.gatech.edu; Tel: +1-404-894-9723
- 17 Hong-Ying Hu: E-mail: hyhu@tsinghua.edu.cn; Tel: +86-10-6279-4005

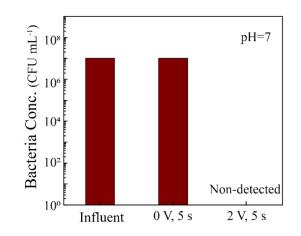


20 Figure S1. Fabrication and characterization of electroporation-disinfection cells (EDCs) with

21 copper oxide nanowire (CuONW)-Cu electrodes. (a) Schematics showing the construction of an

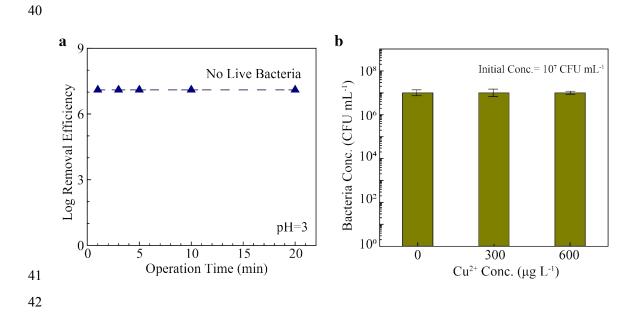
- 22 EDC. (**b**, **c**) Scanning electron microscopy (SEM) image showing (**b**) a modified copper foam, and
- 23 (c) CuONWs on the surface of the copper foam.
- 24


18


26 Figure S2. Bacteria concentration after cultivated in water with different pH from 3 to 11.

27 The initial bacteria concentration is 10⁷ CFU mL⁻¹, the cultivation time is 2 h and the temperature

- 28 time is room temperature. The pH ranging from 3 to 11 had no impact on the activity of bacteria.
- 29


- 30
- 31 Figure S3. Scanning electron microscope (SEM) images of *E. coli* showing the electroporation
- 32 pores on the membrane after treatment. (a) SEM image of *E. coli* without EDC treatment. (b)
- 33 SEM image of *E. coli* after 2 V, 5 s EDC treatment at pH of 7.
- 34
- 35

37 Figure S4. Electroporation mechanism investigation. No bacteria were inactivated when flew

38 through the EDC without applied voltage at 5 s contact time.

43 Figure S5. The disinfection efficiency of EDC during continuous operation at pH=3 and the 44 contribution of Cu^{2+} to the disinfection performance. The EDC can achieve complete 45 disinfection for 20-min operation at pH=3. A Cu^{2+} concentration of 300 µg L⁻¹ was measured in the 46 effluent. When cultivated the bacteria in the water containing Cu^{2+} with the concentration of 0, 300, 47 and 600 µg L⁻¹ for 6 h, the concentration of live bacteria remained similar. This indicated that the 48 released Cu^{2+} will not impact the inactivation performance.

49

51 Experiment method in Supporting Information

52	Bacterial Sample Preparation for Scanning Electron Microscopy (SEM). All bacterial samples
53	for SEM were harvested by centrifugation at 14500 rpm (17600g) for 15 min at room temperature,
54	and supernatants were removed. Then bacteria were fixed overnight in the fixative containing 0.1
55	M phosphate-buffered solution (pH 7.3) and 2% glutaral dehyde at 4 $^{\circ}\mathrm{C}$ and washed with DI water.
56	Samples were then dehydrated with increasing concentrations of an ethanol solution (50, 70, 90,
57	and 100%) and dried in 100% tert-butyl alcohol. Samples were dispersed on a metal grid in
58	preparation for SEM characterization.
59	Cu^{2+} measurement. The concentration of Cu^{2+} in the effluents was measured by ICP-MS (X Series
60	2). Treated water samples were filtered through 0.45 μ m filters and stored in 1 M nitric acid before
61	measurement.
62	
63	
64	