Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2018

Supplementary materials for

Comparative study of naproxen degradation by the UV/chlorine and the UV/ H_2O_2 advanced oxidation processes

Mingwei Pan^{a,1}, Zihao Wu^{a,1}, Changyuan Tang^{a,b}, Kaiheng Guo^a, Yingjie Cao^a, Jingyun Fang^{a,*}

a. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,

School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

b. School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, China.

*Corresponding author. Phone: +86 20 8411 0692; e-mail: fangjy3@mail.sysu.edu.cn.

¹Shared first authorship

Number of pages (including this page): 22 Number of figures: 7 Number of texts: 2 Number of tables:6

Lists of captions of Texts, Figures and Tables

Text S1. The operating conditions of UPLC-QTOF MS under ESI negative mode
Text S2. The calculation of EE/O. 4
Table S1. Reactivities between scavengers and involved radicals in the processes. 5
Table S2. Concentrations of HOCl and OCl ⁻ at different pHs with 50 μM chlorine dosage
Table S3. Simulated molar concentration of reactive species with different bicarbonate dosages
Table S4. Water quality parameters of the real water sample
Table S5. Accurate mass measurement of product ions of NPX and its transformed products as determined by
HPLC/ESI-IT-TOFMS
Figure S1. UV-vis absorption spectrum of NPX in aqueous phase
Figure S2. Degradation of NPX and NB by UV/chlorine AOP in pure water at different pHs. Conditions: [chlorine] ₀
= 50 μ M, [NPX] ₀ = 5 μ M, [NB] ₀ = 1 μ M, [Phosphate buffer] ₀ = 2 mM12
Figure S3 . Degradation of NPX by the UV/H ₂ O ₂ AOP in pure water at different pHs. Conditions: $[H_2O_2]_0 = 50 \ \mu M$,
$[NPX]_0 = 5 \ \mu M$, $[phosphate buffer]_0 = 2 \ mM$
Figure S4. Competition kinetics of NPX versus the reference compound DMOB at pH 10 by ClO•. Direct UV
photolysis and chlorination have been subtracted. Conditions: $[chlorine]_0 = 300 \ \mu M$, $[NPX]_0 = [DMOB]_0 = 5 \ \mu M$.
$[TBA]_0 = 0.5 \text{ mM}14$
Figure S5. The degradation kinetics of NPX by chlorination with addition of bromide and chloride in pure water at
pH 7. Conditions: [chlorine] ₀ = 50 μ M, [NPX] ₀ = 5 μ M, [bromide] ₀ = 10 μ M, [chloride] ₀ = 5 mM15
Figure S6. Total ion chromatogram (TIC) under ESI negative mode
Figure S7. MS and MS2 spectra of the degradation products of NPX by the UV/chlorine and UV/H ₂ O ₂ AOPs under
ESI negative mode

Text S1. The operating conditions of UPLC-QTOF MS under ESI negative mode.

The chromatographic separation was achieved using a C-18 column (Waters acquity BEH, 1.7 µm). The mobile phase consisted of 0.1% formic acid water (A) and methanol (B), with a gradient elution of A/B from 95/5 (v/v) to 5/95 for 20 min. The sample injection volume was 0.3 µL. The Ion Mobility-Q-TOFMS was operated under the following conditions: ESI negative mode, capillary 2.5 kV, source temperature 110 °C, desolvation temperature 350 °C, sampling cone 30 V, cone gas flow 30 L/Hr, desolvation gas flow 700 L/Hr, nebulizer gas flow 6 bar, trap collision energy 4 eV, transfer collision energy 2 eV, trap gas flow 2 mL/min, lock spray capillary 2.5 kV, collision energy 4 eV, trap MSMS collision energy ramp 4~30eV.

Text S2. The calculation of EE/O.

Electrical Energy per Order (EE/O) was applied to compare the cost of the UV/chlorine and UV/H₂O₂ AOPs for the removal of 90% NPX. The total EE/O includes electrical energy for UV irradiation (EE/O_{UV}) and equivalent electrical energy for oxidant consumption (EE/O_{oxidant}). The calculation of EE/O, EE/O_{UV} and EE/O_{oxidant} followed eqs s1-s4.

$$EE/O = EE/O_{UV} + EE/O_{oxidant} (kWh/m^3)$$
(S1)

$$EE/O_{UV} = \overline{V * log^{\text{ind}}([NPX]t/[NPX]0} \text{ (kWh/m^3)}$$
(S2)

$$EE/O_{oxidant} = Eq_{oxidant} * Oxidant/O (kWh/m^3)$$
(S3)

$$Oxidant/O = \overline{log^{[m]}([NPX]t/[NPX]0} (mg/L) \qquad \Box \qquad (S4)$$

where EE/O_{UV}, and EE/O_{oxidant} are the electrical energy consumptions by UV irradiation and oxidant (chlorine or H₂O₂), respectively, kWh/m³; P is electronic energy input of UV lamps, kW (photoelectric conversion efficiency of the reactor was 25.0%, P = UV irradiance / 25.0%) ^{s1}; V is the reaction volume, L; t is the reaction time, h; [NPX]₀ and [NPX]_t are the NPX concentrations at 0 h and t h, respectively, mg/L; [Oxidant]₀ is the concentration of oxidant, mg/L, Eq_{oxidant} is the equivalent electric energy consumption to produce per milligram of oxidant, kWh/mg (Eq_{chlorine} = 11.6 × 10⁻⁶ kWh/mg ^{s2}, Eq_{H2O2} = 10.8 × 10⁻⁶ kWh/mg ^{s3}); Oxidant/O is the oxidant required for per order magnitude elimination of NPX, mg/L).

[Ovidant]]

	Rate constants (M ⁻¹ s ⁻¹)								
Scavenger	НО•	Cl•	ClO•	Cl ₂ -	CO₃-				
HCO ₃ -	$8.5\times10^{6\text{s}4}$	$2.2\times10^{8}{}^{\rm s5}$	600 s ⁵	$8.0\times10^{7\text{s6}}$	-				
TBA	$6.0\times 10^{8\text{s4}}$	3.0×10^{8s7}	$1.3\times 10^{7\mathrm{s}9}$	700 s ⁸	$9.6 imes 10^{4 s9}$				

Table S1. Reactivities between scavengers and involved radicals in the processes.

рН	HOCl (µM)	OCl ⁻ (µM)
6	48.5	1.5
7	38	12
9	1.5	48.5

Table S2. Concentrations of HOCl and OCl⁻ at different pHs with 50 μ M chlorine dosage.

Water treatment	dosage	CO ₃ • (M)	HO• (M)	Cl• (M)	$\operatorname{Cl}_2^{\bullet}(M)$	ClO• (M)
	control	1.62 × 10 ⁻¹³	9.40 × 10 ⁻¹⁴	0	0	0
UV/H ₂ O ₂	1 mM	2.45×10^{-12}	8.05×10^{-14}	0	0	0
	5 mM	7.42×10^{-12}	5.11 × 10 ⁻¹⁴	0	0	0
	control	4.74 × 10 ⁻¹²	9.28 × 10 ⁻¹⁴	2.83×10^{-14}	1.82×10^{-13}	9.00 × 10 ⁻¹³
UV/chlorine	1 mM	1.65 × 10 ⁻¹¹	7.59×10^{-14}	1.56×10^{-14}	4.57×10^{-14}	6.83 × 10 ⁻¹³
	5 mM	2.02 × 10 ⁻¹¹	3.94 × 10 ⁻¹⁴	7.65 × 10 ⁻¹⁵	7.04 × 10 ⁻¹⁵	5.05 × 10 ⁻¹³

Table S3. Simulated molar concentration of reactive species with different bicarbonate dosages

Tuble 5 il Water quality parameters of the feat water sample.									
	$\mathrm{NH_4^+}$	Mg ²⁺	Ca ²⁺	F-	Cl-	NO ₂ -	Br	NO ₃ -	HCO ₃ -
Concentration									

0.44

16.03

0.06

n.d.

10.79

58.56

33.13

DOC

0.628

Table S4. Water quality parameters of the real water sample.

n.d.

Note: n.d. means undetectable.

(mg/L)

0.04

Table S5. Accurate mass measurement of product ions of NPX and its transformed products as determined

by HPLC/ESI-IT-TOFMS.

	RT	[M-H] ⁻ (m/z)		Elemental	D 10		
Compound	(min)	Theoretical	Experimental	formula	Proposed Structure	UV/chlorine	UV/H ₂ O ₂
236	1.865	235.0150	235.0162	C ₁₂ H ₈ O ₃ Cl	H ₃ C O OH	\checkmark	
252	2.168	251.0101	251.0111	C ₁₂ H ₈ O ₄ Cl	H ₃ C ₀ Cl OH OH	\checkmark	
220ª	2.691	219.0649	219.0657	$C_{12}H_{11}O_4$	H ₃ C O (OH) ₃		\checkmark
264	3.915	263.0544	263.0556	$C_{13}H_{11}O_6$	H ₃ C ₀ H ₀ (OH) ₃		
216	4.642	215.0692	215.0708	$C_{13}H_{11}O_3$	H ₃ C O		
204ª	5.102	203.0689	203.0708	$C_{12}H_{11}O_3$	H ₃ C O (OH) ₂		
220 ^b	5.384	219.0644	219.0657	$C_{12}H_{11}O_4$	H ₃ C O (OH) ₃		\checkmark
232ª	5.622	231.0647	231.0657	C ₁₃ H ₁₁ O ₄	H ₃ C O O H O H	\checkmark	\checkmark

Figure S1. UV-vis absorption spectrum of NPX in aqueous phase.

Figure S2. Degradation of NPX and NB by UV/chlorine AOP in pure water at different pHs. Conditions: [chlorine]₀ = 50 μ M, [NPX]₀ = 5 μ M, [NB]₀ = 1 μ M, [Phosphate buffer]₀ = 2 mM.

Figure S3. Degradation of NPX by the UV/H₂O₂ AOP in pure water at different pHs. Conditions: $[H_2O_2]_0 = 50 \ \mu\text{M}$, $[\text{NPX}]_0 = 5 \ \mu\text{M}$, $[\text{phosphate buffer}]_0 = 2 \ \text{mM}$.

Figure S4. Competition kinetics of NPX versus the reference compound DMOB at pH 10 by CIO•. Direct UV photolysis and chlorination have been subtracted. Conditions: $[chlorine]_0 = 300 \ \mu M$, $[NPX]_0 = [DMOB]_0 = 5 \ \mu M$. $[TBA]_0 = 0.5 \ mM$.

Figure S5. The degradation kinetics of NPX by chlorination with addition of bromide and chloride in pure water at pH 7. Conditions: [chlorine]₀ = 50 μ M, [NPX]₀ = 5 μ M, [bromide]₀ = 10 μ M, [chloride]₀ = 5 mM.

Figure S6. Total ion chromatogram (TIC) under ESI negative mode.

Figure S7. MS and MS2 spectra of the degradation products of NPX by the UV/chlorine and UV/ H_2O_2 AOPs under ESI negative mode.

References:

- s1. J. R. Bolton, K. G. Bircher, W. Tumas and C. A. Tolman, PURE APPL. CHEM, 2001, 73, 627-637.
- s2. W. Wang, Q. Wu, N. Huang, T. Wang and H. Hu, WATER RES, 2016, 98, 190-198.
- s3. Y. Xiao, L. Zhang, J. Yue, R. D. Webster and T. Lim, WATER RES, 2015, 75, 259-269.
- s4. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J PHYS CHEM REF DATA, 1988, 2, 513-886.
- s5. NIST, Editon edn., 2017, vol. 2017.
- s6. B. Matthew and C. Anastasio, ATMOS CHEM PHYS, 2006, 2423-2437.
- s7. R. Mertens and C. V. Sonntag, Journal of Photochemistry & Photobiology A Chemistry, 1995, 85, 1-9.
- s8. K. Hasegawa and P. Neta, The Journal of Physical Chemistry, 1978, 82, 854-857.
- s9. Z. Wu, K. Guo, J. Fang, X. Yang and H. Xiao, WATER RES, 2017, 126, 351.