Biofouling control by UV/H₂O₂ pretreatment for brackish water reverse osmosis process

Anat Lakretz^a, Hadas Mamane^{a*} Eli Asa^b, Tali Harif^c, and Moshe Herzberg^{b*}

^a School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
^b Ben Gurion University of the Negev, Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Sede Boqer Campus, Midreshet Ben Gurion, 84990 Israel. E-mail: herzberg@bgu.ac.il
^cSevern Trent plc, Severn Trent Centre, 2 St John's St, Coventry, CV1 2LZ, UK

Supplementary material

Text S1

Degradation of *p*CBA involves direct UV photolysis and indirect photo-oxidation by •OH radicals, as described by Rosenfeldt and Linden $(2007)^{1}$.

$$-\ln\frac{\left[pCBA\right]_{t}}{\left[pCBA\right]_{0}}/t = k_{obs} = k' + k_{pCBA,\bullet OH} \left[\bullet OH\right]_{ss}$$
(1)

$$k' = \phi_{pCBA} \times k_{s,pCBA} \tag{2}$$

$$k_{s,pCBA} = \sum_{200-300} \frac{10^{-3} \times \mathrm{E}_{p}^{0}(\lambda) \varepsilon_{pCBA}(\lambda) \left[1 - 10^{-a(\lambda)z}\right]}{a(\lambda)z}$$
(3)

$$\left[\bullet OH\right]_{ss} = \frac{k_{obs} - \phi_{pCBA} \times k_{s,pCBA}}{k_{pCBA,\bullet OH}}$$
(4)

Where, $[pCBA]_0$ and $[pCBA]_t$ are initial pCBA concentration (M) and its concentration after exposure time t (sec), respectively. k_{obs} and k' are the observed (total) and direct-photolysis timebased pseudo-first-order degradation rate constants of pCBA, respectively (1/sec). [•OH]_{ss} is the steady-state •OH radical concentration (M) and $k_{pCBA, •OH}$ is the second-order rate constant of pCBA reaction with •OH, reported to be 5×10⁹ 1/M s. Φ_{pCBA} is the quantum yield for pCBA removal 0.0182 mole/Einstein, $k_{s,pCBA}$ is the specific rate of light absorption by pCBA (Einstein/mole sec). $E^0p(\lambda)$ is the incident photon irradiance (Einstein/cm² sec), $\varepsilon_{pCBA}(\lambda)$ is the molar (decadic) absorption coefficient of pCBA (1/M cm), $a(\lambda)$ is the solution absorption coefficient (1/cm) and z is the depth of solution (cm).

Fig. S2 Atlantium hydro-optic-disinfection (HODTM) RZ104-11 MP-UV reactor: (A) photo; (B) schematic illustration.

Reference

1 E. J. Rosenfeldt and K. G. Linden, *Environ. Sci. Technol.*, 2007, 41, 2548–2553.