Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Behavior of NDMA Precursors at 21 Full-Scale Water Treatment Facilities

Stuart W. Krasner^{a,*}, Paul Westerhoff^b, William A. Mitch^c, David Hanigan^d, Daniel L. McCurry^e,

and Urs von Gunten^{f,g}

^aMetropolitan Water District of Southern California, Water Quality, La Verne, CA 91750, USA

^bArizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ 85259-3005, USA

^cStanford University, Department of Civil and Environmental Engineering, Stanford, CA, 94305, USA

^dUniversity of Nevada - Reno, Department of Civil and Environmental Engineering, Reno, NV 89557-0258,USA

^eUniversity of Southern California, Astani Department of Civil and Environmental Engineering, Los Angeles, CA, 90089, USA

^fEawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland, CH-8600

^gSchool of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, CH-1015.

*Corresponding author. Tel.: +1 909 392-5083; fax: +1 909 392-5246

E-mail addresses: skrasner@mwdh2o.com (S.W. Krasner), P.WESTERHOFF@asu.edu (P.

Westerhoff), wamitch@stanford.edu (W.A. Mitch), dhanigan@unr.edu (D. Hanigan),

dmccurry@usc.edu (D.L. McCurry), vongunten@eawag.ch (U. von Gunten).

2 tables

3 figures

11 pages

TABLES

- Table S1. Treatment/disinfection processes at participating DWTPs
- Table S2.
 Water quality at participating DWTPs (basic survey samples)

FIGURES

Figure S1. NDMA yield from polymer usage ([settled water NDMA FP minus NDMA FP of water before polymer addition] divided by polymer dose as the active ingredient) at 7 DWTPs with polyDADMAC and 1 DWTP with polyamine, where n is the number of samples for each polymer type

Figure S2. Impact of free chlorine exposure (pH 7.6) and pH at selected conditions on NDMA formation in DWTP 3 settled water during post-chloramination (pH 8.3, 25°C, 6.5 days). Blank spot indicates that test condition was not evaluated.

Figure S3. Impact of free chlorine contact time (pH 7.2) on SDS NDMA and SDS THM4 formation in DWTP 12 raw water during post-chloramination (pH 8, 25°C, 3 days)

Plt	Pre- Treat.	I – – – – – – – – – – – – – – – – – – –	Poly.	Lime Soft.	I I	BAF	BAC	PAC	GAC	Cl_2	ClO ₂			UV
		X	 		X	I I	I		1	int.,		int.		
' 		। └────	 	 	 !	 	 !	 	 	_post_	 		 !	
$\frac{2}{3}$		<u>X</u>	PAM		! !	! !	X			_post_		int.	post_	
		<u> </u>	pDAD_	X	X	! !	! !	_ X		int.			_int	
<u>4</u>	_RBF_	 	 	X		!	! !			_ int.			post	
<u>5</u>		<u> X </u>	pDAD_		X	! 	! !		X	_post_	 			
6		$\frac{1}{1}$ - $\frac{X}{X}$ - $\frac{1}{1}$	pDAD_	X	! !	! 	_X			_post_		int.	_post_	
7		X	 	Х	X	I I	I	Х	1	int.,			int.	
।		। ↓	 		 	 	 		 	post	 	 		
8		X	pDAD	Х	X	I	I		l I	pre,		pre	pre,	
; 		 	 		 	ı +	 	 	 	post	 	 	post	
9		X	pDAD		 	, 	X		1 	post		pre, int.	post	
10		X	pDAD		 	† I	i		X	pre,			post	
		l I			I I	I I	I		1	post				
		X	pDAD		 	r I	 		X	post	pre,		post	
 		I L	 L	 	I I	I L	 		 	I I	int.			
12		X	F 		UF	Г — — — — I	 		 	pre,	 		post	Х
' 		I L	 	 	 !	। ↓	 !	 	 	_post_	 		 !	
13		X	pDAD		\mathbf{X}	I I	I		1	pre,		 	post	Х
 		 	 	 	 	 	 	 		post	 	 	 	
L			pDAD		X or	1	I		Х	int.,				
, , , – – – –		DAF	 		<u>M</u> F	 	 	 		post	 	 	 	
15		$\frac{1}{1} - \frac{X}{X} - \frac{1}{X}$, 		UF_		 			pre_		 	_int	
16		X	pDAD		l	X				pre,		pre	pre,	
। ⊢ – – ⊣		। ┾ ·	 		 	 	 	 		post	 	 	post_	
17		X	pDAD		1	1	X			pre,			post	
		। └───-	 L	 	 	 	 	 	 	post	 	post		
(continued)														

Table S1. Treatment /disinfection processes at participating DWTPs

Table S1 (continued)

Plt	Pre-	Coag.	Poly.	Lime	Filt.	BAF	BAC	PAC	GAC	Cl ₂	ClO ₂	0 ₃	NH ₃	UV
	Treat.	1	 	Soft.		 	 	 	 	1	1	1		
18	1	Х	pDAD	1	Х	I I	I I	I I	l I	pre,	1	int.	post	
	 	I L	 L	 	 	I L	 	I L	 	_ int	 	I L	 	
19	·		pDAD	 	in-	r — — — — I	 	r — — — — I	 	pre,	 	I	post	
	 	। ∟	। └	 !	line	। ↓	 !	। ↓	 !	post	 !	। ↓	 !	
20	MIEX	Х	poly-	l I	Х	I I	I I	I I	l I	post	I I	I I	 	
	 	I L	amine	 	 	 L	 	 L	 	 	 	 L	 	
21	activ.	Х	l I		Х	l I	l I	l I	l	post	1	l I	post	
	SiO ₂		l I			I I	I I	I I	I I	I I	1	l I		

Abbreviations:

BAC = biologically active carbon

- BAF = biofiltration
- $Cl_2 = chlorine (or hypochlorite)$
- $ClO_2 = chlorine dioxide$
- CO_2 = carbon dioxide
- coag. = coagulation
- DAF = dissolved air flotation
- filt. = filtration
- GAC = granular activated carbon
- int. = intermediate-oxidation/intermediate-

disinfection (e.g., at filter influent)

- MIEX = magnetic ion exchange resin
- MF = microfiltration
- $NH_3 = ammonia$
- $O_3 = ozonation$
- PAC = powdered activated carbon
- PAM = polyacrylamide
- pDAD = polyDADMAC
- poly. = polymer
- post = post-oxidation/post-disinfection (e.g.,

at filter effluent)

pre = pre-oxidation/pre-disinfection (e.g., at

plant influent)

RBF = riverbank filtration

- $SiO_2 = silica dioxide$
- soft. = softening
- UF = ultrafiltration
- UV = ultraviolet

			Pla	Treated Water				
Plant	Date	TOC	UV ₂₅₄	NDMA	Sucralose	TOC	UV ₂₅₄	NDMA
		(mg/L)	(cm ⁻¹)	FP (ng/L)	(µg/L	(mg/L)	(cm ⁻¹)	FP (ng/L)
2	3/5/12	4.4	0.13	7.7	ND	1.5	0.14	29
2	6/4/13	2.1	0.078	6.3	0.3	0.2	0	3.6
3	2/6/12	2.7	0.066	14	0.28	1.5	0.024	11
3	8/13/12	3.2	0.071	22	1.3	2.3	0.045	16
4	2/6/12	1.5	0.026	3.8	0.35	1.4		2.1
4	8/13/12	1.4	0.024	10	0.99	1.3	0.031	
5	2/6/12	3.0	0.07	16	0.18	1.0	0.005	3.4
5	2/4/13	3.8	0.104	12	0.13	1.0	0.024	4.6
6	3/26/12	4.9	0.208	74	0.26	3.1	0.044	13
6	9/24/12	4.3	0.108	33	1.2	2.2	0.025	12
7	2/21/12	7.0	0.13	44	0.92	3.4	0.05	39
7	8/20/12	12.7	0.407	53	<0.2	5.7	0.104	44
9	7/30/12	6.2	0.097	23	0.44	3.0	0.028	19
10	10/8/12	3.2	0.042	13	ND	1.4	0.015	9.0
11	10/8/12	4.5	0.108	11	ND	2.6	0.044	7.9
12	7/9/12	5.3	0.077	46	6.3	4.2	0.059	10
12	1/7/13	3.8	0.050	63	4.4	3.8	0.050	
13	7/9/12	1.76	0.028	7.3	0.24	1.5	0.022	16

 Table S2. Water quality at participating DWTPs (basic survey samples)

(continued)

Table S2 (continued)

			Plar	Treated Water				
Plant	Date	TOC	UV ₂₅₄	NDMA	Sucralose	TOC	UV ₂₅₄	NDMA
		(mg/L)	(cm ⁻¹)	FP (ng/L)	(µg/L	(mg/L)	(cm ⁻¹)	FP (ng/L)
14	Apr '12	3.1	0.048	27	0.80	1.6	0.012	6.2
14	3/18/13	3.0	0.046	12	0.65	1.3	0.014	4.0
15	4/16/12	5.6	0.16	16	1.0	3.4	0.070	
16	4/16/12	5.8	0.16	16	1.0	3.0	0.038	18
16	10/22/12	3.4	0.076	10	0.72	2.0	0.027	5.0
17	9/17/12	2.5	0.064	10	0.76	1.3	0.011	10
17	4/15/13	3.2	0.085	11	0.62	2.1	0.024	4.3
18	5/7/12	4.9	0.13	9.6	<0.20	2.9	0.039	6.9
19	7/22/13	1.6	0.037	2.0	ND	1.4	0.023	2.0
20	11/5/12	3.3	0.068	4.8	ND	1.4	0.014	24
20	5/6/13	3.2	0.078	4.8	ND	1.3	0.013	19
21	6/4/12	7.4	0.26	5.5	< 0.20	3.2	0.062	5.2

 $\overline{ND} = Not detected}$

--- = Not analyzed

Figure S1. NDMA yield from polymer usage ([settled water NDMA FP minus NDMA FP of water before polymer addition] divided by polymer dose as the active ingredient) at 7 DWTPs with polyDADMAC and 1 DWTP with polyamine, where n is the number of samples for each polymer type

Figure S2. Impact of free chlorine exposure (pH 7.6) and pH at selected conditions on NDMA formation in DWTP 3 settled water during post-chloramination (pH 8.3, 25°C, 6.5 days). Blank spot indicates that test condition was not evaluated.

Figure S3. Impact of free chlorine contact time (pH 7.2) on SDS NDMA and SDS THM4 formation in DWTP 12 raw water during post-chloramination (pH 8, 25°C, 3 days).