Supplementary material

Correlating fluorescence spectral properties with DOM molecular weight and size distribution in wastewater treatment systems

Kang Xiao^{a,b,*}, Yuexiao Shen^c, Jianyu Sun^d, Shuai Liang^e, Huiju Fan^b, Jihua Tan^a,

Xiaomao Wang^b, Xia Huang^{b,*} T. David Waite^f

^a College of Resources and Environment, University of Chinese Academy of Sciences,

Beijing 100049, China

^b State Key Joint Laboratory of Environment Simulation and Pollution Control, School of

Environment, Tsinghua University, Beijing 100084, China

^c Department of Chemistry, University of California, Berkeley, CA 94720, USA

^d National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China

^e College of Environmental Science and Engineering, Beijing Forestry University, Beijing

100083, China

^f School of Civil and Environmental Engineering, The University of New South Wales,

Sydney, NSW 2052, Australia

*Corresponding authors

E-mail addresses: kxiao@ucas.ac.cn (K. Xiao), xhuang@tsinghua.edu.cn (X. Huang)

Fig. S1. Illustration of typical fluorescence regions, fluorescence peaks and fluorescence indices, according to the references of:

- W. Chen, P. Westerhoff, J. A. Leenheer, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. *Environ. Sci. Technol.*, 2003, <u>https://doi.org/10.1021/es034354c</u>
- [2] P. G. Coble, J. Lead, A. Baker, et al. *Aquatic Organic Matter Fluorescence*, Cambridge University Press, New York, 2014, <u>https://doi.org/10.1017/cbo9781139045452</u>
- [3] K. Xiao, S. Liang, A. Xiao, et al. Fluorescence quotient of excitation-emission matrices as a potential indicator of organic matter behavior in membrane bioreactors. *Environ. Sci.: Water Res. Technol.*, 2018a, <u>https://doi.org/10.1039/c7ew00270j</u>
- [4] K. Xiao, Y. Shen, S. Liang, et al. Characteristic regions of the fluorescence excitation-emission matrix (EEM) to identify hydrophobic/hydrophilic contents of organic matter in membrane bioreactors. *Environ. Sci. Technol.*, 2018b, <u>https://doi.org/10.1021/acs.est.8b02684</u>

Fig. S2. UV-Vis spectra of DOM with different molecular weight/size levels from (a) membrane tank, (b) membrane effluent, and (c) oxidation ditch secondary effluent.

Fig. S3. Fluorescence excitation spectra and emission spectra of the DOM fractions.

Fig. S4. Fluorescence excitation spectra in terms of fluorescence intensity (R.U.) per excitation UV absorbance (A.U.).

		HIX _{syn}	HIX _{em}	BIX	FI	Peak T/C
Spearman's ρ						
	Membrane tank	0.833*	0.738*	0.048	-0.071	-0.762*
	Membrane effluent	0.238	0.643 ^(*)	-0.214	0.548	-0.548
	Secondary effluent	0.690 ^(*)	0.833*	-0.071	-0.405	-0.881**
Pearson's r						
	Membrane tank	0.905**	0.659 ^(*)	-0.218	0.023	-0.743*
	Membrane effluent	0.121	0.667 ^(*)	-0.228	0.602	-0.343
	Secondary effluent	0.793*	0.710*	-0.129	-0.188	-0.818*

Table S1 Correlation analyses between conventional fluorescence indices and logarithmic molecular size cut-off in the range from 1 kDa to 0.7 μ m

Note: The superscript ** denotes highly significant (p < 0.01); * denotes significant ($0.01 \le p$ <0.05); (*) denotes moderately significant ($0.05 \le p < 0.1$).

Table S2 Correlation analyses between conventional UV spectral indices and logarithmic molecular size cut-off in the range from 1 kDa to 0.7 μ m

		$E_2:E_3$	S ₂₇₅₋₂₉₅	S ₃₅₀₋₄₀₀	S _R
Spe	Spearman's ρ				
	Membrane tank	-0.738*	0.286	0.333	0.190
	Membrane effluent	0.220	0.024	-0.515	-0.143
	Secondary effluent	0.167	0.452	0.738*	0.786^{*}
Pea	earson's r				
	Membrane tank	-0.629 ^(*)	0.233	0.412	0.301
	Membrane effluent	0.232	0.029	-0.341	-0.287
	Secondary effluent	0.085	0.439	0.699 ^(*)	0.697 ^(*)

Note: The superscript ** denotes highly significant (p < 0.01); * denotes significant ($0.01 \le p$

<0.05); (*) denotes moderately significant $(0.05 \le p < 0.1)$.

 Table S3 Fluorescence intrinsic lifetimes of the molecular-size fractions and detection of outliers.

	Membrane tank	Membrane effluent	Secondary effluent
Estimated $\tau_0/\rho_{\rm F}$	0.73 ± 0.10	0.52 ± 0.07	0.74 ± 0.05
(ns·g-TOC/mmol-fluorophore) ^a			
Outlier according to ordinary	"<0.5 kDa" (0.92)	not found	"<0.5 kDa" (0.63)
least-square regression (Cook's			
distance >1) ^b			
Outlier according to Theil's	"<0.5 kDa" (0.92);	"<0.5 kDa" (0.61)	"<0.5 kDa" (0.63)
robust regression (residual's	"<1 kDa" (0.53)		
modified Z-score > 3.5) ^b			

Note: ^a Averaged over different molecular-size fractions with standard deviation; ^b Outlier marked in double quotes with its τ_0/ρ_F value included in parentheses.