Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Occurrence and fate of benzophenone-type UV filters in aquatic environments: A review

Feijian Mao^{a,b}, Yiliang He^c, Karina Yew-Hoong Gin^{a,b,*}

^a Department of Civil and Environmental Engineering, National University of Singapore,

1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore

^b NUS Environmental Research Institute, National University of Singapore, 5A

Engineering Drive 1, #02-01, Singapore 117411, Singapore

^c School of Environmental Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China

* Corresponding author. Tel.: +65 65168104; E-mail address: ceeginyh@nus.edu.sg

Country/Region	Sample	Detect. Freg.ª	Median	Lowest conc. ^b	Highest conc. ^c	References
BP-1						
China	WWTP influent	100.0%	1750	-	1750	1
	WWTP influent	100.0%	168.9 ^d	23.3	281.3	2
	WWTP effluent	88.2%	89.5 ^d	19.6	155	2
	WWTP effluent	100.0%	-	n.d.	n.d.	1
	Wastewater	88.2%	463.2	216	490	3
	Sewage	100.0%	660	-	660	4
Taiwan region	WWTP effluent	100.0%	1.7 ^d	1.5	1.7	5
-	WWTP effluent	100.0%	12.25 ^d	7.7	16.8	6
	WWTP effluent	100.0%	9.45	7.3	11.6	7
Spain	STP influent	100.0%	80 ^d	31 ± 2	148 ± 7	8
	WWTP influent	100.0%	283.2 ^d	152.4	722	9
	WWTP effluent	60.0%	12.9 ^d	2.89	31.1	9
	STP effluent	50.0%	12 ^d	<loq< td=""><td>13 ± 2</td><td>8</td></loq<>	13 ± 2	8
Italy	WWTP influent	-	86.9	-	86.9 ± 6.5	10
-	WWTP effluent	-	17.6	-	17.6 ± 4.2	10
Czech	WWTP influent	-	-	-	-	11
	WWTP effluent	-	-	-	-	11
United Kingdom	WWTP influent	100%	306 ^d	-	306	12
-	WWTP influent	100%	258000	51000	700000	13
	WWTP effluent	100%	32 ^d	-	32	12
	WWTP effluent	58%	12000	<loq< td=""><td>38000</td><td>13</td></loq<>	38000	13
Germany	WWTP influent	100%	265.5 ^d	43 ± 4	488 ± 19	14
-	WWTP effluent	50%	12 ± 1 ^d	<loq< td=""><td>12 ± 1</td><td>14</td></loq<>	12 ± 1	14
Portugal	WWTP influent	6.7%	184.4	88.5	480.5	15
-	WWTP effluent	0	-	-	-	15
BP-2						
Spain	WWTP influent	0	-	n.d.	n.d.	9
	WWTP effluent	0	-	n.d.	n.d.	9

Table S1. Global occurrence of benzophenones in wastewater treatment plants (WWTPs) and sewage treatment plants (STPs) (in ng L^{-1})

United Kingdom	WWTP influent	100%	194000	61000	403000	13
U	WWTP influent	100%	-	-	25	12
	WWTP effluent	100%	-	-	1	12
	WWTP effluent	42%	4000	<loq< td=""><td>13000</td><td>13</td></loq<>	13000	13
Italy	WWTP influent	-	-	-	-	10
,	WWTP effluent	-	-	-	-	10
Germany	WWTP influent	100%	-	35 ± 6	93 ± 10	14
,	WWTP effluent	50%	-	<loq< td=""><td>14 ± 3</td><td>14</td></loq<>	14 ± 3	14
BP-3						
USA	WWTP influent	-	6870	5300	8300	16
	in dry season					
	WWTP influent	-	6240	110	10400	16
	in wet season					
	WWTP effluent	16.7%	-	-	840	16
Switzerland	WWTP influent	100%	1700 ^d	600	7800	17
	WWTP effluent	100%	150 ^d	<10	700	17
Spain	WWTP influent	75%	101 ^d	<lod< td=""><td>127</td><td>18</td></lod<>	127	18
	WWTP influent	45%	-	-	-	19
	WWTP influent	100%	182.4 ^d	75.6	306	9
	STP influent	100%	343 ^d	184 ± 8	429 ± 23	8
	Wastewater	0	-	n.d.	n.d.	20
	Raw waste	66.7%	91.5 ^d	<lod< td=""><td>168 ± 7</td><td>21</td></lod<>	168 ± 7	21
	water					
	STP effluent	80%	93 ^d	<loq< td=""><td>260</td><td>22</td></loq<>	260	22
	WWTP effluent	100%	48 ^d	42 ± 3	54 ± 6	23
	STP effluent	0	-	< LOQ	< LOQ	18
	WWTP effluent	0	-	-	-	19
	WWTP effluent	-	82	-	82 ± 7	24
	STP effluent	75%	83 ^d	77 ± 4	84 ± 3	8
	WWTP effluent	100%	15.6 ^d	7.71	34	9
Portugal	WWTP influent	84.4%	64.85	5.4	323.3	15
-	WWTP effluent	42.2%	22.2	12.3	136	15
Slovenia	WWTP influent	0	-	<loq< td=""><td><loq< td=""><td>25</td></loq<></td></loq<>	<loq< td=""><td>25</td></loq<>	25

	(hospital					
Janan	STP effluent	100%	_	29	164	26
United Kingdom	WWTP influent	64%	1195000	61000	3975000	13
ennea rangaenn	WWTP influent	100%	971 ^d	-	971	12
	WWTP effluent	8%	22000	< 00	223000	13
	WWTP effluent	100%	143 ^d	-	143	12
Brazil	WWTP effluent	0	-	<loq< td=""><td><loq< td=""><td>27</td></loq<></td></loq<>	<loq< td=""><td>27</td></loq<>	27
Norway	WWTP effluent	-	293	81	598	28
)	WWTP effluent	-	233	10	438	28
	WWTP effluent	-	721	374	1915	28
China	WWTP influent	50%	-	-	258 ± 4	29
	WWTP influent	0	-	-	-	30
	WWTP influent	100%	271.1 ^d	113.8	576.5	2
	WWTP influent	-	5590	-	5590	31
	WWTP influent	100%	2620	-	2620	1
	WWTP influent	0	-	n.d.	n.d.	32
	WWTP effluent	100%	237.5 ^d	152 ± 28	323 ± 19	29
	WWTP effluent	0	-	-	-	30
	WWTP effluent	100%	55.2 ^d	18.4	541.1	2
	WWTP effluent	100%	1380	n.d.	1380	1
	WWTP effluent	100%	3070	-	3070	33
	WWTP effluent	100%	2830	-	2830	34
	WWTP effluent	-	3220	-	3220	31
Taiwan region	WWTP effluent	66.7%	2.95 ^d	<loq< td=""><td>3.6</td><td>5</td></loq<>	3.6	5
	WWTP effluent	100%	16.95 ^d	12.5	21.4	6
	WWTP effluent	100%	12.2	10.9	13.5	7
South Korea	WWTP effluent	71.4%	-	1	30	35
	WWTP effluent	41.2%	7.82	n.d.	13.4	36
	STP effluent	-	-	-	-	37
	WWTP effluent	-	-	-	-	37
Australia	WWTP influent	100%	2085.5 ^d	1059 ± 99	3112 ± 551	38
	WWTP primary	100%	1761 ^d	1053 ± 265	2469 ± 101	38

	effluent					
	WWTP	100%	271 ^d	54 ± 21	488 ± 8	38
	secondary					
	effluent	((00
	WWTP waste	100%	199.5ª	36 ± 0.2	363 ± 4	38
	stabilization					
	Lagoon effluent	4000/		00 (20
	WWIP final	100%	152.5	32 ± 1	$2/3 \pm 8$	30
	effluent		007.47		007.47	20
0	STP effluent	-	32.7 ± 1.7	-	32.7 ± 1.7	39 14
Germany		100%	356.5 ⁴	195 ± 31	518 ± 55	40
	WW IP influent	-	234 ± 41	-	234 ± 41	40
	Effluent ultra-	-	3 ± 0.5	-	3 ± 0.5	40
		500/	ood		00 + 40	14
		50%	96 [°]	< LOQ	96 ± 12	40
	Eπluent	-	19±4	-	19 ± 4	40
	sequential					
	batch reactor		40 + 0		40.0	40
		-	18 ± 2	-	18 ± 2	40
						40
		-	45 ± 5	-	45 ± 5	40
		4000/	20 d	20 . 5		41
Italy		100%	38° 400.0	32 ± 5	551 ± 10	10
		-	102.8	- 7	102.0 ± 0.2	42
	WWWIP Inituent	-	-	1	30	42
	WWWTP Innuent	-	-	20 15	119	42
	WWWIP Inituent	-	-	10	3Z 162	42
	WWTP Innuent	-	-	30 6	103	42
	WWTP Influent	-	-	0	110	42
	WWTP Innuent	-	-	0 5 ± 15	40 21 ± 2	41
		100%	-	5115		42
		-	-	-	20	42
		-	-	0	20	·

	WWTP effluent	-	-	5	10	42
	WWTP effluent	-	-	10	26	42
	WWTP effluent	-	-	-	13	42
	WWTP effluent	-	-	6	10	42
	WWTP effluent	-	18.2	-	18.2 ± 1.2	10
BP-6						
Portugal	WWTP influent	0	-	-	-	15
-	WWTP effluent	0	-	-	-	15
BP-8						
China	WWTP influent	41.2%	121.7 ^d	<loq< td=""><td>174.2</td><td>2</td></loq<>	174.2	2
	WWTP effluent	35.3%	40.45 ^d	<loq< td=""><td>83.5</td><td>2</td></loq<>	83.5	2
Taiwan region	WWTP effluent	50%	3	-	3	7
	WWTP effluent	-	-	n.d.	n.d.	5
	WWTP effluent	0	-	n.d.	n.d.	6
Spain	WWTP influent	50.0%	122 ^d	<lod< td=""><td>185</td><td>18</td></lod<>	185	18
	WWTP influent	0	-	n.d.	n.d.	9
	Wastewater	100%	272.3	226	383.8	3
	STP effluent	25.0%	55	-	55	18
	WWTP effluent	0	-	n.d.	n.d.	9
20H-BP						
Spain	WWTP effluent	-	-	-	-	24
Taiwan region	WWTP effluent	50%	2.1	-	2.1	7
3OH-BP						
Spain	WWTP effluent	-	-	-	-	24
Taiwan region	WWTP effluent	50%	2.1	-	2.1	7
2,3,4OH-BP						
Portugal	WWTP influent	0	-	-	-	15
	WWTP effluent	0	-	-	-	15
40H-BP						
Spain	WWTP influent	0	-	n.d.	n.d.	9
	WWTP effluent	0	-	n.d.	n.d.	9
	WWTP effluent	-	-	-	-	24
Taiwan region	WWTP effluent	0	-	-	-	7

Italy	WWTP influent -	20.1	-	20.1 ± 3.2	10
2	WWTP effluent -	-	-	<mdl< td=""><td>10</td></mdl<>	10
4DHB					
Spain	WWTP influent 0	-	n.d.	n.d.	9
-	WWTP effluent 0	-	n.d.	n.d.	9

^a detection frequency;
^b lowest concentration;
^c highest concentration;
^d calculated based on reported data.

Country/region	Sample	Detect. Freq.ª	Median	Lowest conc. ^b	Highest conc. ^c	References
BP-1						
China	Sludge from WWTP	100%	-	4.41	91.6	43
	River sediments	0	-	-	-	43
South Korea	Industrial drainage	0	-	<loq< td=""><td><loq< td=""><td>44</td></loq<></td></loq<>	<loq< td=""><td>44</td></loq<>	44
	Ground soil	0	-	<loq< td=""><td><loq< td=""><td>44</td></loq<></td></loq<>	<loq< td=""><td>44</td></loq<>	44
	Sediments	0	-	<loq< td=""><td><loq< td=""><td>44</td></loq<></td></loq<>	<loq< td=""><td>44</td></loq<>	44
Singapore	River SS	44.0%	43.2	<loq< td=""><td>119.5</td><td>45</td></loq<>	119.5	45
	Reservoir SS	46.7%	78.7	<loq< td=""><td>103.7</td><td>45</td></loq<>	103.7	45
	River sediments	86.7%	3.0	<loq< td=""><td>22.5</td><td>45</td></loq<>	22.5	45
	Reservoir sediments	53.3%	1.1	<loq< td=""><td>2.5</td><td>45</td></loq<>	2.5	45
Germany	Sludge (ng g TSS ⁻¹)	100%	5.1 ± 1.5	-	5.1 ± 1.5	14
USA	River sediments	66.7%	-	0.259	0.607	43
Spain	Raw sludge	-	-	n.d.	n.d.	46
	Treated sludge: sludge	-	-	n.d.	n.d.	46
	(62%) and wheat-straw					
	pellets (38%) (w/w)					
	Raw sludge	-	80	-	80	47
	Sludge after treatment in	-	-	n.d.	n.d.	47
	a bioslurry reactor					
	River Sediments	0	-	-	-	48
	River sediments in	0	-	-	-	49
	winter					
	River sediments in	0	-	-	-	49
	summer					
	River sediments	0	-	n.d.	n.d.	50
	Marine sediments	0	-	n.d.	n.d.	50
	Marine sediments	-	-	n.d.	n.d.	51
	Soil treated with	63.3%	2.95	n.d.	23.9	52
	compost from sewage					

Table S2. Global occurrence of benzophenones in sewage sludge, benthic sediments, suspended solids (SS) and soil (in ng $g^{-1} dry weight (d.w.)$)

	sludge					
	Soils amended with sludge	0	-	n.d.	n.d.	50
	Industrial soil	100%	-	n.d.	n.d.	50
	Agricultural soil	65%	1.6	n.d.	5.6	52
BP-2						
China	Activated sludge	0	-	-	-	30
	Sludge from WWTP	0	-	-	-	43
	River sediments	0	-	-	-	43
	Suspended Solids	0	-	-	-	30
Singapore	River SS	96.0%	152.6	<loq< td=""><td>2773.9</td><td>45</td></loq<>	2773.9	45
	Reservoir SS	80.0%	154.7	<loq< td=""><td>672.1</td><td>45</td></loq<>	672.1	45
	River sediments	100.0%	9.4	4.7	27.5	45
	Reservoir sediments	80.0%	1.7	<loq< td=""><td>6.2</td><td>45</td></loq<>	6.2	45
USA	River sediments	16.7%	-	-	2.65	43
Germany	Sludge (ng g TSS ⁻¹)	100%	11 ± 2	-	11 ± 2	14
Spain	Agricultural soil	100%	4.7	0.8	9.4	52
	Soil treated with	91.7%	4.1	n.d.	10.3	52
	compost from sewage					
	sludge					
	Marine sediments	-	-	n.d.	n.d.	51
BP-3						
Spain	Raw sludge	-	60	n.d.	60	46
	Raw sludge	-	34	-	34	47
	Sludge	22.2% ^d	194	n.d.	194	53
	Treated sludge: sludge	-	-	n.d.	n.d.	46
	(62%) and wheat-straw					
	pellets (38%) (w/w)					
	Sludge from STPs	13.3%	-	n.d	0.79	54
	Sludge after treatment in	-	19	n.d.	19	47
	a bioslurry reactor					
	River sediments related	0	-	-	-	50

	with bathing or					
	recreational activities					
	River sediments	30%	11.9	< LOQ	27	48
	River sediments	0	-	n.d.	n.d.	50
	River sediments in	0	-	-	-	49
	winter					
	River sediments in	0	-	-	-	49
	summer					
	Marine sediments	100%	1.72	1.55	2.46	51
	Marine sediments	0	-	n.d.	n.d.	50
	Industrial soil	0	-	n.d.	n.d.	50
	Soil from agricultural	0	-	-	-	50
	fields					
	Agricultural soil	96.4%	1.9	0.8	13.7	52
	Soil treated with	88.1%	1.35	n.d.	26.7	52
	compost from sewage					
	sludge					
	Soils amended with	0	-	n.d.	n.d.	50
	sludge					
USA	River sediments	100%	2.34	0.728	4.66	43
Norway	Sludge	-	-	-	<10	28
	Sludge	-	1218	824	2116	28
	Sediment	-	-	-	<5	28
	Sediment	-	-	-	<5	28
China	Sludge	0	-	n.d.	n.d.	55
	Sludge from WWTP	100%	12.8	2.05	13.3	43
	Sludge	100%	12.8	2.05	23.3	43
	River sediments	-	-	0.16	1.07	56
	River sediments	100%	0.38	0.272	0.545	43
Singapore	River SS	100.0%	189.1	68.9	2107.6	45
	Reservoir SS	100.0%	271.4	148.3	593.9	45
	River sediments	100.0%	10.7	7.7	21.3	45
	Reservoir sediments	100.0%	1.5	1.0	3.9	45

South Korea	River and lake sediments	0	-	<loq< th=""><th><loq< th=""><th>44</th></loq<></th></loq<>	<loq< th=""><th>44</th></loq<>	44
	Ground soil	15.2%	2.65	<loq< td=""><td>3.88</td><td>44</td></loq<>	3.88	44
	Soil from industrial drainage	14.3%	-	<loq< td=""><td>0.027</td><td>44</td></loq<>	0.027	44
Japan	River sediments	0	-	-	-	26
·	STP biosolids	0	-	-	-	26
Chile	River sediments	-	-	n.d	1.05	57
	Estuarine sediments	50%	-	n.d	2.96	57
	Coastal sediments	-	-	n.d	1.42	57
	Coastal sediments	0	-	n.d	n.d	57
	Coastal sediments	0	-	n.d	n.d	57
Colombia	Estuarine sediments	-	-	n.d	5.38	57
	Estuarine sediments	-	-	n.d	4.85	57
	Coastal sediments	-	-	n.d	2.52	57
Germany	Lake sediments	-	-	n.d	n.d	58
,	Sludge (ng g TSS ⁻¹)	100%	132	-	132	14
	Sludge from STPs	-	-	-	-	59
Australia	Biosolids from STP	100%	74.0	-	74.0	39
	WWTP influent suspended solids	100%	107.5 ^e	104 ± 0.6	111 ± 21	38
	WWWTP primary sludge	100%	160.5 ^e	120 ± 3	201 ± 39	38
	WWTP secondary	100%	987 ^e	189 ± 5	1785 ± 93	38
	WWTP digested sludge	100%	226 ^e	149 ± 13	303 ± 26	38
	WWTP Waste stabilization lagoon	100%	19 ± 0.2	-	19 ± 0.2	38
	WWTP Sludge stabilization lagoon	100%	18 ± 3	-	18 ± 3	38
	WWTP biosolids	100%	16 ± 2	-	16 ± 2	38

Brazil	Sludge	100%	12	12	13	60
BP-6						
Singapore	River SS	100.0%	138.5	23.8	657.8	45
	Reservoir SS	100.0%	198.9	69.8	469.7	45
	River sediments	100.0%	7.9	4.0	41.0	45
	Reservoir sediments	100.0%	1.4	0.8	2.3	45
Spain	River sediments	60%	-	n.d.	6.1 ± 0.3	50
	Marine sediments	0	-	n.d.	n.d.	50
	Marine sediments	-	-	n.d.	n.d.	51
	Soils amended with	33.3%	-	n.d.	0.6 ± 0.4	50
	sludge					
	Soil treated with	31.7%	5.5	n.d.	25.6	52
	compost from sewage					
	sludge					
	Industrial soil	0	-	n.d.	n.d.	50
	Agricultural soil	84.7%	3.8	0.8	9.7	52
BP-8						
China	Sludge from WWTP	0	-	-	-	43
	River sediments	0	-	-	-	43
USA	River sediments	66.6%	-	n.d.	0.796	43
Singapore	River SS	88.0%	153.9	<loq< td=""><td>928.9</td><td>45</td></loq<>	928.9	45
	Reservoir SS	100.0%	182.8	116.1	294.9	45
	River sediments	100.0%	10.5	5.9	14.1	45
	Reservoir sediments	100.0%	2.2	1.0	6.7	45
South Korea	Ground soil	15.2%	-	<loq< td=""><td>4.17</td><td>44</td></loq<>	4.17	44
	Sediments	80%	0.95	<loq< td=""><td>2.14</td><td>44</td></loq<>	2.14	44
	Industrial drainage	0	-	<loq< td=""><td><loq< td=""><td>44</td></loq<></td></loq<>	<loq< td=""><td>44</td></loq<>	44
Spain	River sediments	0	-	n.d.	n.d.	50
•	River sediments in	0	-	-	-	49
	winter					
	River sediments in	0	-	-	-	49
	summer					
	Marine sediments	-	-	n.d.	n.d.	51

	Marine sediments	0	-	n.d.	n.d.	50
	Industrial soil	0	_	n.d.	n.d.	50
	Agricultural soil	97.2%	33	0.8	78	52
	Soils amended with	0	-	n.d.	n.d.	50
	Soil treated with compost from sewage sludge	91.7%	3.65	n.d.	26.7	52
40H-BP	Ē					
China	Sludge from WWTP	80%	-	2.66	10.1	43
	River sediments	0	-	-	-	43
USA	River sediments	50%	-	0.312	0.951	43
Singapore	River SS	100.0%	316.7	88.2	1740.6	45
0	Reservoir SS	100.0%	363.3	57.6	573.9	45
	River sediments	100.0%	16.0	2.2	39.4	45
	Reservoir sediments	100.0%	4.2	2.1	9.3	45
Spain	Raw sludge	-	-	n.d.	n.d.	46
·	Treated sludge: sludge (62%) and wheat-straw	-	-	n.d.	n.d.	46
	pellets (38%) (w/w)					51
	Marine sediments	-	-	n.d.	n.d.	52
	Agricultural soil	88.3%	1.5	0.8	10.9	52
	Soil treated with compost from sewage	88.3%	1.8	n.d.	15.1	52
0 11 17	sludge					44
South Korea	Industrial drainage	0	-	<loq< td=""><td><loq< td=""><td>44</td></loq<></td></loq<>	<loq< td=""><td>44</td></loq<>	44
	Ground soil	9.1%	-	<loq< td=""><td>4.61</td><td>44</td></loq<>	4.61	44
	Sediments	6.7%	-	<loq< td=""><td>18.38</td><td>44</td></loq<>	18.38	44
2,3,4OH-BP						4.4
South Korea	Industrial drainage	0	-	<loq< td=""><td><loq< td=""><td>44</td></loq<></td></loq<>	<loq< td=""><td>44</td></loq<>	44
	Ground soil	0	-	<loq< td=""><td><luq< td=""><td>44</td></luq<></td></loq<>	<luq< td=""><td>44</td></luq<>	44
. .	Sediments	0	-	<loq< td=""><td><loq< td=""><td>44</td></loq<></td></loq<>	<loq< td=""><td>44</td></loq<>	44
Spain	River sediments	0	-	n.d.	n.d.	50

	River sediments	0	-	-	-	48
	River sediments in winter	0	-	-	-	49
	River sediments in summer	16.7%	32.8	-	39.5	49
	Marine sediments	0	-	n.d.	n.d.	50
	Soils amended with sludge	0	-	n.d.	n.d.	50
	Industrial soil	0	-	n.d.	n.d.	50
4DHB						
Singapore	River SS	100.0%	37.4	6.9	194.5	45
	Reservoir SS	80.0%	46.8	<loq< td=""><td>106.4</td><td>45</td></loq<>	106.4	45
	River sediments	80.0%	2.3	<loq< td=""><td>3.8</td><td>45</td></loq<>	3.8	45
	Reservoir sediments	100.0%	1.7	0.3	9.1	45
Spain	Raw sludge	-	51	-	51	47
-	Sludge after treatment in a bioslurry reactor	-	50	n.d.	50	47
	River sediments in winter	0	-	-	-	49
	River sediments in summer	0	-	-	-	49
	River sediments	15%	20	-	21	48
	Raw sludge	-	70	n.d.	70	46
	Treated sludge: sludge (62%) and wheat-straw pellets (38%) (w/w)	-	-	n.d.	n.d.	46

^a detection frequency;

^b lowest concentration;

^c highest concentration;

^d not detected;

^e calculated based on reported data;

^f unit in wet weight (ww);

⁹ MDL: method detection limit.

Country/region	Sample	Detect.	Median	Lowest	Highest	References
		rieq."		CONC.~	COLC.*	
BP-1 Chine	Diverwater			ъd	n d	61
China	River water	-	-	n.a.	n.a.	61
	River water	-	-	n.a.	n.d.	61
	Lake water	-	-	n.a.	n.a.	62
	River water	-	-		-	62
	River water	81.5%	4.65	n.d.	12.6	03
	River water	0	-	n.d.	n.d.	1
	River water	0	-	n.d.	n.d.	4
	River water	100.0%	129.7	119.6	153.9	3
	Lake water	-	-	n.d.	n.d.	64
	Lake water	-	-	n.d.	n.d.	43
Taiwan region	River water	83.3%	15.1	n.d.	23.8	7
	River water	-	-	-	1.8	5
	Municipal wastewater	50%	-	n.d.	6.1	6
South Korea	River water	4%	_	-	47	44
	l ake water	0	_	-	_	44
ISA	Surface water	33.3%	<lod< td=""><td><100</td><td>74</td><td>65</td></lod<>	<100	74	65
Spain	River water	100.0%	-	-	15.6	66
spani	River water in winter	0	_	-	-	49
	River water in	25.0%	2 03	0.008	26	49
	summer	20.070	2.00	0.000	2.0	
	River water	0	-	-	_	67
	River water	40.0%	5 88 ^d	4 22	7 54	9
	River water	75%	11.2	n d	20.9	68
	l ake water	60%	3.8	n d	64	68
	River water	25.0%	24		0. 4 24 + 1	8
Singanore	River water	-	∠ ⊤ -	n d	nd	69
Jingapore	River water	100.0%	54	1.0	18.2	45
	Reservoir water	100.0%	3.7	1.0	5.2	45
	Reservoir water	100.0%	3.2	1.4	5.2	40

Table S3. Global occurrence of benzophenones in fresh water samples (in ng L⁻¹)

Italy	River water	-	19.4	-	19.4 ± 6.2	10
-	Lake water	0	-	n.d.	n.d.	70
United	River water	0	-	<0.3	<0.3	71
Kingdom	River water	33%	1	<0.3	6	71
-	River water	38%	3	<0.3	17	71
	River water	38%	3	<0.3	9	71
	River water	27%	2	<0.3	3	71
	River water	27%	2	<0.3	9	71
	River water	22%	2	<0.3	8	71
	River water	31%	2	<0.3	9	71
	River water	54%	4	<0.3	13	71
	River water	38%	2	<0.3	10	71
	River water	3/3	7 ^d	6	9	12
	River water	40%	3000	<loq< td=""><td>9000</td><td>13</td></loq<>	9000	13
	River water	30%	5000	<loq< td=""><td>13000</td><td>13</td></loq<>	13000	13
Germany	River water	100%	2.2 ^d	0.9 ± 0.3	29 ± 2	14
	River water	11%	2.2	<lod< td=""><td>2.8</td><td>72</td></lod<>	2.8	72
Switzerland	River water	0/3	-	<lod< td=""><td><lod< td=""><td>73</td></lod<></td></lod<>	<lod< td=""><td>73</td></lod<>	73
Japan	River water	0	<loq< td=""><td><loq< td=""><td><loq< td=""><td>74</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>74</td></loq<></td></loq<>	<loq< td=""><td>74</td></loq<>	74
Thailand	River water	100%	127	-	166	65
BP-2						
Spain	River water	0	-	-	-	67
	River water	0	-	<loq< td=""><td><loq< td=""><td>66</td></loq<></td></loq<>	<loq< td=""><td>66</td></loq<>	66
	River water	0	-	n.d.	n.d.	68
	Lake water	40%	3.55	n.d.	4.7	68
	River water	0	-	n.d.	n.d.	9
China	River water	51.9%	4.65	n.d.	34.7	63
	River water	-	-	-	-	62
Sigapore	River water	100.0%	7.9	0.8	109.2	45
	Reservoir water	100.0%	3.3	1.6	12.3	45
United	River water	0	-	<0.5	<0.5	71
Kingdom	River water	0	-	<0.5	<0.5	71
	River water	25%	1	<0.5	15	71

	River water	6%	18	<0.5	284	71
	River water	45%	1	<0.5	5	71
	River water	9%	<0.5	<0.5	1	71
	River water	0	-	<0.5	<0.5	71
	River water	8%	-	<0.5	<0.5	71
	River water	31%	4	<0.5	26	71
	River water	25%	1	<0.5	6	71
	River water	33.3%	4 ^d	-	4	12
	River water	0	-	<loq< td=""><td><loq< td=""><td>13</td></loq<></td></loq<>	<loq< td=""><td>13</td></loq<>	13
	River water	40%	5000	<loq< td=""><td>26000</td><td>13</td></loq<>	26000	13
Italy	River water	-	-	-	-	10
-	Lake water	0	-	n.d.	n.d.	70
Germany	River water	66.7%	4.25 ^d	<loq< td=""><td>6.7 ± 2.4</td><td>14</td></loq<>	6.7 ± 2.4	14
	River water	0	-	<lod< td=""><td><lod< td=""><td>72</td></lod<></td></lod<>	<lod< td=""><td>72</td></lod<>	72
Switzerland	River water	0	-	<lod< td=""><td><lod< td=""><td>73</td></lod<></td></lod<>	<lod< td=""><td>73</td></lod<>	73
BP-3						
Switzerland	River water	33.3%	-	< LOD	96 ± 93	73
		400.00/		50	(ng/POCIS)	75
	River water	100.0%		56	68	75
	River water (ng POCIS ⁻¹)	80.8%	52.5ª	12	178	75
	Lake water	-	-	< 2	4	76
	Lake water	-	-	5	125	76
	Lake water	100.0%	14 ^d	<2	35	17
Spain	River water	25.0%	-	<lod< td=""><td>27 ± 3</td><td>21</td></lod<>	27 ± 3	21
	River water	50%	-	< LOD	30 ± 3	23
	Lake water	75.0%	17 ± 2	<lod< td=""><td>27 ± 4</td><td>23</td></lod<>	27 ± 4	23
	River water	0	-	<loq< td=""><td><loq< td=""><td>66</td></loq<></td></loq<>	<loq< td=""><td>66</td></loq<>	66
	River water	36.7%	-	<loq< td=""><td>71</td><td>22</td></loq<>	71	22
	River water	100.0%	8 ^d	6	28	18
	River water	-	428	-	428	77
	River water	0	-	n.d.	n.d.	78
	River water	0	-	-	-	19

	River water	-	66	-	66 ± 1	24
	River water	100%	30.9	n.d.	58	68
	Lake water	60%	12.4	n.d.	29.6	68
	River water	0	-	n.d.	n.d.	79
	River water	100%	115.4	97.3	242.6	3
	River water	50.0%	230	-	230	80
	River water after	25.0%	-	n.d.	35 ± 2	81
	River water in winter	33.3%	12.8	_	14.3	49
	River water in	100%	52.65	30.5	5720	49
	River water	50.0%	70 5 ^d	< 00	87 + 8	8
	River water	-	-		<1 OD	82
	River water	40.0%	21.32	4.84	37.8	9
	River water	100.0%	34	24.9	58	67
Slovenia	River water	50%	-	<lod< td=""><td>114</td><td>25</td></lod<>	114	25
	Lake water	80%	62 ^d	<lod< td=""><td>85</td><td>25</td></lod<>	85	25
Japan	Industrial and domestic WW	16.7%	-	<loq< td=""><td>4</td><td>26</td></loq<>	4	26
	polluted river water	00 70/			10	26
	Polluted river water	66.7%	-	<loq< td=""><td>12</td><td>20</td></loq<>	12	20
	Domestic wastewater receiving stream water	100%	-	16	41	20
	Background sites (two little contaminated rivers	40%	-	<loq< td=""><td>10</td><td>26</td></loq<>	10	26
	and three lakes)	1000/				74
0	River water	100%	14			74
Singapore	River water	-	-	n.d.	n.d.	83
	River water	-	-	n.d.	n.d.	84
	River water	100.0%	8.4	2.3	122.6	45
	River water	-	-	n.d.	n.d.	69

	Reservoir water	100.0%	6.9	4.5	56.1	45
	Reservoir water	100%	10	2.45	331	85
Thailand	River water	100%	86	-	116	65
United	River water	0	-	<15	<15	71
Kingdom	River water	0	-	<15	<15	71
-	River water	19%	7	<15	43	71
	River water	19%	8	<15	44	71
	River water	18%	8	<15	44	71
	River water	18%	6	<15	36	71
	River water	0	-	<15	<15	71
	River water	0	-	<15	<15	71
	River water	0	-	<15	<15	71
	River water	0	-	<15	<15	71
	River water	100%	36 ^d	28	37	12
	River water	0	-	<loq< td=""><td><loq< td=""><td>13</td></loq<></td></loq<>	<loq< td=""><td>13</td></loq<>	13
	River water	0	-	<loq< td=""><td><loq< td=""><td>13</td></loq<></td></loq<>	<loq< td=""><td>13</td></loq<>	13
Brazil	River water	0	-	< 2	< 2	86
	River water	0	-	<loq< td=""><td><loq< td=""><td>27</td></loq<></td></loq<>	<loq< td=""><td>27</td></loq<>	27
China	River water	-	-	n.d.	n.d.	61
	Lake water	-	-	n.d.	n.d.	61
	Lake water	-	-	-	1620	87
	River water	-	-	-	1700	87
	River water	-	59	-	59	88
	River water	-	-	n.d.	n.d.	89
	River water	70.4%	13.2	n.d.	30	63
	River water	0	-	n.d.	n.d.	90
	River water	37.5%	2210	n.d.	2580	31
	River water	100%	100	870	2580	1
	River water	50%	2325 ^d	n.d.	4010	32
	River water	100%	2020	620	3080	34
	River water	100%	1820	580	3350	33
	River water	100%	-	n.d.	n.d.	4
	Lake water	-	-	n.d.	n.d.	91

	Lake water	-	-	n.d.	n.d.	64
Taiwai region	Municipal wastewater receiving river water	100%	13.85 ^d	12.3	15.4	6
	River water	100%	13.7	1.6	39.7	7
South Korea	River water	25%	-	1.2	2.7	35
	River water	50%	3.06	n.d.	5.50	36
	River water	0	-	-	-	44
	Lake water	0	-	-	-	44
	River	-	-	-	-	37
Germany	Lake water	-	83 ± 11	-	83 ± 11	92
,	River water	11%	6.7	<lod< td=""><td>11.4</td><td>72</td></lod<>	11.4	72
	River water	33.3%	47 ^d	< LOQ	47 ± 29	14
	Recreational lake water	-	40 ± 3	-	40 ± 3	40
Italy	River water	80%	21.5 ^d	< LOD	69 ± 13	41
	River water	-	9.9	-	9.9 ± 3.2	10
	Lake water	33.3%	-	n.d.	<mloq< td=""><td>70</td></mloq<>	70
Czech	River water under the source of pollution	-	-	12	67	93
	River and production ponds without bathing activities (background sites)	-	-	14	20	93
Colombia	River water	37.5%	98	-	162	94
	River water	-	-	n.d.	n.d.	94
	Reservoir water	96%	-	n.d.	502	94
	Reservoir water	-	-	n.d.	n.d.	94
	Reservoir water	-	-	n.d.	n.d.	94
	Reservoir water	-	-	n.d.	n.d.	94
	Reservoir water	-	-	n.d.	n.d.	94
	Reservoir water	-	-	n.d.	n.d.	94
	Reservoir water	-	-	n.d.	n.d.	94
	Reservoir water	-	-	n.d.	n.d.	94

	Reservoir water	-	-	n.d.	n.d.	94
	Reservoir water	-	-	n.d.	n.d.	94
BP-6						
China	River water	-	-	-	-	62
Singapore	River water	96.0%	2.0	<loq< td=""><td>27.6</td><td>45</td></loq<>	27.6	45
	Reservoir water	77.8%	1.8	<loq< td=""><td>4.3</td><td>45</td></loq<>	4.3	45
BP-8						
China	River water	-	-	n.d.	n.d.	5
	River water	-	-	-	-	62
	River water	33.3%	11.45	n.d.	19.7	7
	Municipal wastewater	100%	9.95 ^d	9.8	10.1	6
	receiving river water					
Italy	Lake water	33.3%	-	n.d.	<mloq< td=""><td>70</td></mloq<>	70
Singapore	River water	100.0%	3.6	2	10.3	45
	Reservoir water	100.0%	3.1	2.1	4.5	45
South Korea	River water	0	-	-	-	44
	Lake water	0	-	-	-	44
Thailand	River water	100%	63	-	71	65
Spain	River water	0	-	-	-	67
·	River water	25%	3.2	n.d.	3.2	68
	Lake water	0	-	n.d.	n.d.	68
	River water	100%	33	17.5	34.3	3
	River water	0	-	<loq< td=""><td><loq< td=""><td>66</td></loq<></td></loq<>	<loq< td=""><td>66</td></loq<>	66
	River water in winter	0	-	-	-	49
	River water in	16.7%	20.45	-	22.1	49
	summer					
	River water	0	-	n.d.	n.d.	9
	River water	0	-	-	-	18
20H-BP						
Spain	River water after	0	-	-	-	81
	extreme rainfall					
	River water	-	-	-	-	24
Taiwan region	River water	50%	8.1	n.d.	14.7	7

Japan	River water	0	<loq< th=""><th><loq< th=""><th><loq< th=""><th>74</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>74</th></loq<></th></loq<>	<loq< th=""><th>74</th></loq<>	74
3OH-BP						
Spain	River water after	0	-	-	-	81
	extreme rainfall					
	River water	-	-	-	-	24
Taiwan region	River water	0	-	-	-	7
Japan	River water	100%	7	-	-	74
2,3,4OH-BP						
South Korea	River water	0	-	-	-	44
	Lake water	0	-	-	-	44
China	River water	0	4.65	n.d.	n.d.	63
4OH-BP						
Spain	River water	0	-	-	-	67
	River water	0	-	<loq< td=""><td><loq< td=""><td>66</td></loq<></td></loq<>	<loq< td=""><td>66</td></loq<>	66
	River water in winter	0	-	-	-	49
	River water in	0	-	-	-	49
	summer					
	River water	-	-	-	-	24
	River water	50%	1.75	n.d.	2.1	68
	Lake water	40%	1.6	n.d.	1.6	68
	River water	0	-	n.d.	n.d.	9
Japan	River water	100%	6	-	-	74
Singapore	River water	88.0%	8.6	<loq< td=""><td>15.2</td><td>45</td></loq<>	15.2	45
0.	Reservoir water	100.0%	6.4	3.8	9.7	45
South Korea	River water	0	-	-	-	44
	Lake water	16.7%	-	-	85	44
China	River water	-	-	n.d.	n.d.	61
	River water	-	-	n.d.	n.d.	61
	Lake water	-	-	n.d.	n.d.	61
	River water	63%	3.2	n.d.	4.7	63
	Lake water	-	-	n.d.	n.d.	91
	Lake water	-	-	n.d.	n.d.	64

Taiwan region	River water	0	-	-	-	7
Italy	River water	-	2.6	-	2.6 ± 1.2	10
-	Lake water	0	-	n.d.	n.d.	70
4DHB						
Spain	River water	0	-	-	-	67
	River water	0	-	n.d.	n.d.	9
	River water	0	-	n.d.	n.d.	68
	Lake water	40%	22.95	n.d.	31.2	68
	River water	0	-	<loq< td=""><td><loq< td=""><td>66</td></loq<></td></loq<>	<loq< td=""><td>66</td></loq<>	66
	River water in winter	0	-	-	-	49
	River water in	0	-	-	-	49
	summer					
Singapore	River water	100.0%	6.1	0.2	26.7	45
	Reservoir water	93.3%	3.7	<loq< td=""><td>8.2</td><td>45</td></loq<>	8.2	45
Germany	River water	0	-	<lod< td=""><td><lod< td=""><td>72</td></lod<></td></lod<>	<lod< td=""><td>72</td></lod<>	72
Switzerland	River water	0	-	<lod< td=""><td><lod< td=""><td>73</td></lod<></td></lod<>	<lod< td=""><td>73</td></lod<>	73
Italy	Lake water	0	-	n.d.	n.d.	70

^a detection frequency; ^b lowest concentration;

^c highest concentration;
 ^d calculated based on reported data.

Country/region	Sample	Detect. Freq.ª	Median	Lowest conc. ^b	Highest conc. ^c	References
BP-1						
China	Sea water	76.7%	82	<lod< td=""><td>135</td><td>65</td></lod<>	135	65
	Sea water	0	-	LOD	LOD	65
	Sea water	50.0%	22	LOD	58	65
	Sea water	0	-	<mdl< td=""><td><mdl< td=""><td>95</td></mdl<></td></mdl<>	<mdl< td=""><td>95</td></mdl<>	95
	Swimming pool	-	8700	-	8700	61
	Ground water	66.7%	4.45	n.d.	5	3
	Rainwater	100.0%	1140	-	1410	1
	Tap water	-	-	-	-	62
	Tap water	0	-	n.d.	n.d.	3
	Ultrapure water	-	-	-	-	62
Taiwan region	Groundwater	-	-	n.d.	n.d.	5
USA	Sea water	75.0%	100	< LOQ	117	65
Spain	Sea water	33.3%	280 ^d	-	280 ± 30	96
	Ground water	16.1%	0.9 ± 3.5	<loq< td=""><td>19.4</td><td>66</td></loq<>	19.4	66
	Ground water	0	-	-	-	67
	Ground water	40.0%	17.5 ^d	15.6	19.4	9
Italy	Tap water	-	-	n.d.	n.d.	70
Japan	Sea water	62.5%	52	<lod< td=""><td>95</td><td>65</td></lod<>	95	65
	Swimming pool and spa	2.9%	1.2	n.d.	1.2	97
BP-2						
Spain	Ground water	0	-	<loq< td=""><td><loq< td=""><td>66</td></loq<></td></loq<>	<loq< td=""><td>66</td></loq<>	66
	Ground water	0	-	-	-	67
	Ground water	0	-	n.d.	n.d.	9
	Ultrapure water	-	-	-	-	62
	Tap water	-	-	-	-	62
Italy	Tap water	-	-	n.d.	n.d.	70

Table S4. Global occurrence of benzophenones in sea water, swimming pools, ground water and other types of water samples (in ng L⁻¹)

Japan	Swimming pool and spa	3.9%	24.3	n.d.	27.2	97
BP-3						
USA	Sea water	100%	23	-	178	65
	Sea water	100%	227	-	601	65
	Sea water	-	-	n.d.	n.d.	98
	Sea water	-	-	75000	95000	98
	Sea water	-	-	580000	1395000	98
	Sea water	-	-	<5000	19200	98
	Sea water	-	-	<5000	<5000	98
Spain	Sea water	-	254	-	254	77
	Sea water	-	60	-	60 ± 8	24
	Sea water	-	-	-	-	99
	Seawater	0	-	n.d.	n.d.	20
	Sea water	100.0%	692	-	692	80
	Beach water	0	-	n.d.	n.d.	78
	Sea water	50.0%	0.62	n.d.	0.75 ± 0.16	100
	Sea water	-	603	-	603 ± 50	82
	Spa water	0	-	n.d.	n.d.	79
	Sea water	0	-	n.d.	n.d.	79
	Sea water	100.0%	1440 ^d	1340 ± 60	3300 ± 200	96
	Sea water	56%	4.6	<1.4	27.1	101
	Sea water	100%	238.7	32.7	979.8	101
	Sea water	100%	91.0	12.7	2675.7	101
	Sea water	100%	343.2	54.2	3316.7	101
	Sea water	61%	3.7	<1.4	158.0	101
	Sea water	72%	9.6	<1.4	182.6	101
	Swimming pool	14.3%	0.775	n.d.	0.8	79
	Swimming pool	10.0%	-	n.d.	10	80
	Swimming pool	0	-	n.d.	n.d.	78
	Swimming pool	0	-	-	-	102
	Swimming pool	0	-	n.d.	n.d.	20
	Swimming pool	-	538	-	538 ± 50	82

	Swimming pool Ground water Ground water Ground water Ground water Ground water under extreme rainfall	0 66.7% 32.3% - 40.0% 0 63.6%	- 4.45 2.3 ± 4.9 63 19.18 ^d -	n.d. n.d. <loq - 4.36 - n.d.</loq 	n.d. 5 19.2 63 ± 5 34 - 482 ± 60	100 3 66 24 9 67 81
	Ground water under extreme rainfall	0	-	n.d.	n.d.	81
	Tap water	33.3%	3.9	n.d.	3.9	3
	Tap water	-	-	<loq< td=""><td><loq< td=""><td>77</td></loq<></td></loq<>	<loq< td=""><td>77</td></loq<>	77
	Tap water	0	-	n.d.	n.d.	20
	Tap water	42.9%	55 ± 3	n.d.	295 ± 68	103
	Tap water	42.9%	66 ± 31	n.d.	98 ± 19	103
	Tap water	42.9%	70 ± 32	n.d.	130 ± 14	103
	Drinking water	0	-	-	-	19
	Bath water	0	-	n.d.	n.d.	104
	Spa	0	-	n.d.	n.d.	80
	lonic-exchange resin-treated water	50.0%	35 ± 3	n.d.	54 ± 13	103
	Aquapark water	0	-	n.d.	n.d.	80
	Aquapark water	0	-	n.d.	n.d.	79
Slovenia	Swimming pool water	100%	251.5 ^d	103	400	25
Japan	Sea water	100%	24	-	86	65
	Sea water (beach sites)	87.0%	62.5 ^d	n.d.	1258	105
	Sea water (river and reef sites)	7/58.3%	101 ^d	n.d.	216	105

	Swimming pool	11.8%	24.3	n.d.	16.57	97
Singapore	Swimming pool	_	-	n d	n d	106
enigapere	Swimming pool	_	_	n.d.	n.d.	83
	Tap water	-	_	n.d.	n.d.	106
	Tap water	-	-	n.d.	n.d.	83
	Tap water	-	-	n.d.	n.d.	69
Brazil	Chlorinated water	0	-	n.d.	<loq< td=""><td>27</td></loq<>	27
Sweden	Ground water	11.1%	6.9	n.d.	6.9	107
Norway	Landfill leachate	-	18	< 10	372	28
	Landfill leachate	-	114	32	646	28
China	Sea water	100%	24.4	12.9	31.9	95
	Sea water	95%	39	<lod< td=""><td>5429</td><td>65</td></lod<>	5429	65
	Sea water	100%	55	-	188	65
	Sea water	100%	37	-	49	65
	Swimming pool	-	4500	-	4500	61
	Rain water	0	-	n.d.	n.d.	90
	Rainwater	100%	1210	-	1210	1
Taiwan region	Groundwater	-	-	n.d.	n.d.	5
Australia	Ground water	-	-	<loq< td=""><td><loq< td=""><td>39</td></loq<></td></loq<>	<loq< td=""><td>39</td></loq<>	39
Italy	Sea water	60%	8 ± 4 ^d	< LOD	13 ± 10	41
-	Sea water	58.3%	101 ^d	25	216	108
	Tap water	-	-	n.d.	n.d.	70
Pacific Ocean	Sea water (pg SPMD ⁻¹)	60%	5940	<510	34310	109
	Sea water (microlayer)	100%	5.5 ^d	5	6	109
Greece	Sea water	100%	-	-	1.8 ± 0.4	110
	Sea water	0	-	n.d.	n.d.	111
	Shower wastes	100%	-	-	10.0	110
	Shower wastes	100%	9050 ^d	8200	9900	111
	Bathing water	100%	7.35 ^d	6.5 ± 1.4	8.2 ± 1.6	112
	Swimming pool	100%	2850 ^d	2400	3300	111

	Swimming pool	100%	4.2 ± 0.9	-	4.2 ± 0.9	110
	Game pool water	100%	5.7 ± 0.9	-	5.7 ± 0.9	110
	Distilled water	-	-	n.d.	n.d.	112
Czech	Swimming pool	-	-	26	620	93
	Recreational	-	-	21	550	93
	ponds					
BP-6						
China	Ultrapure water	-	-	-	-	62
	Tap water	-	-	-	-	62
BP-8						
China	Sea water	88%	64	<lod< td=""><td>117</td><td>65</td></lod<>	117	65
	Sea water	0	-	<lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<>	<lod< td=""><td>65</td></lod<>	65
	Sea water	0	-	-	-	65
	Sea water	0	-	<mdl< td=""><td><mdl< td=""><td>95</td></mdl<></td></mdl<>	<mdl< td=""><td>95</td></mdl<>	95
	Tap water	-	-	-	-	62
	Ultrapure water	-	-	-	-	62
Taiwan region	Groundwater	-	-	n.d.	n.d.	5
Japan	Sea water	100%	76	-	96	65
•	Swimming pool	42.2%	2.7	n.d.	59.1	97
	and spa					
USA	Sea water	100%	72	-	92	65
	Sea water	50%	29	<lod< td=""><td>96</td><td>65</td></lod<>	96	65
Italy	Tap water	-	-	n.d.	n.d.	70
Spain	Sea water	0	-	-	-	96
•	Ground water	0	-	-	-	67
	Ground water	0	-	<loq< td=""><td><loq< td=""><td>66</td></loq<></td></loq<>	<loq< td=""><td>66</td></loq<>	66
	Ground water	0	-	n.d.	n.d.	9
	Ground water	0	-	n.d.	n.d.	3
	Tap water	0	-	n.d.	n.d.	3
20H-BP						
Spain	Sea water	-	-	-	-	24
	Ground water	-	-	-	-	24
	Ground water	0	-	-	-	81

	under extreme rainfall Ground water under extreme rainfall	0	-	-	-	81
3OH-BP						
Spain	Sea water	-	-	-	-	24
	Ground water under extreme rainfall	0	-	-	-	81
	Ground water under extreme rainfall	0	-	-	-	81
	Ground water	-	-	-	-	24
2,3,40H-BP						
Spain	Sea water	0	-	-	-	96
Japan	Swimming pool and spa	8.8%	49.2	n.d.	53.8	97
40H-BP						
Spain	Sea water	-	-	-	-	24
	Ground water	0	-	-	-	67
	Ground water	6.5%	0.2	<loq< td=""><td>3.5</td><td>66</td></loq<>	3.5	66
	Ground water	-	-	-	-	24
	Ground water	0	-	n.d.	n.d.	9
Japan	Swimming pool and spa	0	-	n.d.	n.d.	97
China	Swimming pool	-	15400	-	15400	61
Italy	Tap water	-	-	n.d.	n.d.	70
4DHB						
Spain	Ground water	0	-	n.d.	n.d.	9
-	Ground water	0	-	-	-	67
	Ground water	6.5%	0.13	<loq< td=""><td>4.1</td><td>66</td></loq<>	4.1	66
Japan	Swimming pool	44.1%	2.97	n.d.	31.97	97

	and spa					
Italy	Tap water	-	-	n.d.	n.d.	70
 -						

^a detection frequency;
^b lowest concentration;
^c highest concentration;
^d calculated based on reported data.

Country/region	Sample	Detect. Freq. ^a	Median	Lowest conc. ^b	Highest conc. ^c	References
BP-1						
China	Coral (<i>Favites abdita</i>) ^d	0	-	<mdl< td=""><td><mdl< td=""><td>95</td></mdl<></td></mdl<>	<mdl< td=""><td>95</td></mdl<>	95
	Coral (<i>Porites sp.</i>) ^d	28.6%	14.2	<mdl< td=""><td>22.5</td><td>95</td></mdl<>	22.5	95
	Coral (Pavona decussata) ^d	0	-	<mdl< td=""><td><mdl< td=""><td>95</td></mdl<></td></mdl<>	<mdl< td=""><td>95</td></mdl<>	95
	Coral (Acropora valida) ^d	0	-	<mdl< td=""><td><mdl< td=""><td>95</td></mdl<></td></mdl<>	<mdl< td=""><td>95</td></mdl<>	95
	Coral (<i>Platygyra acuta</i>) ^d	0	-	<mdl< td=""><td><mdl< td=""><td>95</td></mdl<></td></mdl<>	<mdl< td=""><td>95</td></mdl<>	95
	Seafood	0	-	-	-	37
Taiwan region	Fish (Striped bass)	-	-	-	1.7	113
0	Fish (<i>Tilapia</i>)	-	-	-	0.7	113
	Fish (Code)	-	-	-	1.0	113
New Zealand	Clams (Laternula elliptica)	0	-	-	-	114
	Sea urchins (Sterichinus	-	-	-	-	114
	neumayeri)					
	Fish (<i>Trematomus bernachii</i>)	0	-	-	-	114
	Liver of fish (<i>Trematomus</i>	0	-	-	-	114
	bernachii)					
Europe	Canned Mackerel	100%	-	5	41.8	115
•	Canned Sardine	0	-	n.d.	n.d.	115
	Canned Tuna	100%	-	5	39	115
	Crustacean Shrimp	100%	-	-	23.8	115
	Bivalves Mussels	81.8%	-	n.d.	94.2	115
	Cephalopod Octopus	0	-	n.d.	n.d.	115
	Crustacean crab	0	-	n.d.	n.d.	115
	Fish Pangasius	0	-	n.d.	n.d.	115
	Fish Salmon	33.3%	-	n.d.	5	115
	Fish Seabream	50%	-	n.d.	98.9	115
	Fish perch	100%	-	-	17.2	115
	Fish cod	0	-	n.d.	n.d.	115
	Fish Mackerel	44.4%	-	n.d.	5.0	115
	Fish Monkfish	75%	-	n.d.	36.1	115

Table 3	S5. Global	occurrence	of benzo	phenones in a	quatic biota	(in ng g	⁻¹ d.w. unl	ess specified s	pecifically).
---------	------------	------------	----------	---------------	--------------	----------	-------------	-----------------	---------------

	Fish Plaice/Sole	0	-	n.d.	n.d.	115
	Fish Tuna	100%	-	5	34.2	115
Switzerland	Fish (<i>Leuciscus cephalus</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (Dreissena	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	polymorpha) ^e					
	Fish (<i>Barbus barbus</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (<i>Salmo trutta</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (<i>Anguilla anguilla</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (<i>Phalacrocorax sp.</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
Spain	Mussels	0	-	n.d.	n.d.	116
	Clams	0	-	n.d.	n.d.	116
	Andalusian barbel	0	-	n.d.	n.d.	117
	(Luciobarbus sclateri)					
	Ebro barbel (Luciobarbus	0	-	n.d.	n.d.	117
	graellsii)					
	Common carp (Cyprinus	0	-	n.d.	n.d.	117
	carpio)					
	Ebro barbel (<i>Barbus graellsii</i>)	0	-	n.d.	n.d.	117
	Wels catfish (Silurus glanis)	0	-	n.d.	n.d.	117
	Brown trout (Salmo trutta)	0	-	n.d.	n.d.	117
	Iberian nase	0	-	n.d.	n.d.	117
	(Pseudochondrostoma					
	polylepis)					
	Iberian gudgeon (<i>Gobio</i>	0	-	n.d.	n.d.	117
	lozanoi)					
	Black bass (<i>Micropterus</i>	0	-	n.d.	n.d.	117
	salmoides)					
	Black bass (<i>Alburnus</i>	0	-	n.d.	n.d.	117
	alburnus)					
	European eel (<i>Anguila</i>	0	-	n.d.	n.d.	117
	anguila)					
	Pike (<i>Esox lucius</i>)	0	-	n.d.	n.d.	117
	Pumpkinseed (<i>Leponis</i>	0	-	n.d.	n.d.	117

	gibbosus)					
	Mediterranean barbel (Barbus guiraonis)	0/2	-	n.d.	n.d.	117
	Fish (<i>Luciobarbus sclateri</i>)	0	-	n.d.	n.d.	118
	Fish (<i>Cyprinus carpio</i>)	0	-	n.d.	n.d.	118
	Marine echinoderms	0	-	n.d.	n.d.	51
	(Holothuria tubulosa)					
Italy	Mussels	0	-	n.d.	n.d.	116
Portugal	Mullet	0	-	n.d.	n.d.	116
Netherlands	Flounder	0	-	n.d.	n.d.	116
Brazil	Liver of lebranche mullet (<i>Mugil liza</i>)	100%	-	3.71	17.1	119
	Muscle of lebranche mullet (<i>Mugil liza</i>)	91%	-	<loq< td=""><td><loq< td=""><td>119</td></loq<></td></loq<>	<loq< td=""><td>119</td></loq<>	119
	Gills of lebranche mullet (<i>Mugil liza</i>)	100%	-	<loq< td=""><td><loq< td=""><td>119</td></loq<></td></loq<>	<loq< td=""><td>119</td></loq<>	119
	· • /					
BP-2						
BP-2 China	Seafood	0	-	-	-	37
BP-2 China BP-3	Seafood	0		-		37
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>)	0 50%	-	- n.d.	- 24.3	37 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii)	0 50% 0	- - n.d.	- n.d. n.d.	- 24.3 n.d.	37 117 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii) Common carp (<i>Cyprinus</i> carpio)	0 50% 0 10%	- - n.d. n.d.	- n.d. n.d. n.d.	- 24.3 n.d. 11.2	37 117 117 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii) Common carp (<i>Cyprinus</i> carpio) Ebro barbel (<i>Barbus graellsii</i>)	0 50% 0 10% 10%	- - n.d. n.d. n.d.	- n.d. n.d. n.d. n.d.	- 24.3 n.d. 11.2 2.2	37 117 117 117 117 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii) Common carp (<i>Cyprinus</i> carpio) Ebro barbel (<i>Barbus graellsii</i>) Wels catfish (<i>Silurus glanis</i>)	0 50% 0 10% 50%	- n.d. n.d. n.d.	- n.d. n.d. n.d. n.d. n.d.	- 24.3 n.d. 11.2 2.2 <loq< td=""><td>37 117 117 117 117 117 117</td></loq<>	37 117 117 117 117 117 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii) Common carp (<i>Cyprinus</i> carpio) Ebro barbel (<i>Barbus graellsii</i>) Wels catfish (<i>Silurus glanis</i>) Brown trout (<i>Salmo trutta</i>)	0 50% 0 10% 10% 50% 100%	- n.d. n.d. n.d. -	- n.d. n.d. n.d. n.d. n.d.	- 24.3 n.d. 11.2 2.2 <loq 4.6</loq 	37 117 117 117 117 117 117 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii) Common carp (<i>Cyprinus</i> carpio) Ebro barbel (<i>Barbus graellsii</i>) Wels catfish (<i>Silurus glanis</i>) Brown trout (<i>Salmo trutta</i>) Iberian nase	0 50% 0 10% 10% 50% 100% 0	- n.d. n.d. n.d. - - -	- n.d. n.d. n.d. n.d. - n.d.	- 24.3 n.d. 11.2 2.2 <loq 4.6 n.d.</loq 	37 117 117 117 117 117 117 117 117 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii) Common carp (<i>Cyprinus</i> carpio) Ebro barbel (<i>Barbus graellsii</i>) Wels catfish (<i>Silurus glanis</i>) Brown trout (<i>Salmo trutta</i>) Iberian nase (<i>Pseudochondrostoma</i>	0 50% 0 10% 10% 50% 100% 0	- n.d. n.d. n.d. - -	- n.d. n.d. n.d. n.d. - n.d.	- 24.3 n.d. 11.2 2.2 <loq 4.6 n.d.</loq 	37 117 117 117 117 117 117 117 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii) Common carp (<i>Cyprinus</i> carpio) Ebro barbel (<i>Barbus graellsii</i>) Wels catfish (<i>Silurus glanis</i>) Brown trout (<i>Salmo trutta</i>) Iberian nase (<i>Pseudochondrostoma</i> polylepis)	0 50% 0 10% 10% 50% 100% 0	- n.d. n.d. n.d. - -	- n.d. n.d. n.d. n.d. - n.d.	- 24.3 n.d. 11.2 2.2 <loq 4.6 n.d.</loq 	37 117 117 117 117 117 117 117 117
BP-2 China BP-3 Spain	Seafood Andalusian barbel (<i>Luciobarbus sclateri</i>) Ebro barbel (<i>Luciobarbus</i> graellsii) Common carp (<i>Cyprinus</i> carpio) Ebro barbel (<i>Barbus graellsii</i>) Wels catfish (<i>Silurus glanis</i>) Brown trout (<i>Salmo trutta</i>) Iberian nase (<i>Pseudochondrostoma</i> polylepis) Iberian gudgeon (<i>Gobio</i>	0 50% 0 10% 10% 50% 100% 0	- n.d. n.d. n.d. - - -	- n.d. n.d. n.d. n.d. - n.d. n.d.	- 24.3 n.d. 11.2 2.2 <loq 4.6 n.d. n.d.</loq 	37 117 117 117 117 117 117 117 117 117

	Black bass (<i>Micropterus</i> salmoides)	0	-	n.d.	n.d.	117
	Black bass (Alburnus alburnus)	0/2	-	n.d.	n.d.	117
	European eel (<i>Anguila</i> anguila)	0	-	n.d.	n.d.	117
	Pike (Ésox lucius)	0	-	n.d.	n.d.	117
	Pumpkinseed (<i>Leponis</i> gibbosus)	0	-	n.d.	n.d.	117
	Mediterranean barbel (Barbus guiraonis)	0	-	n.d.	n.d.	117
	Fish (<i>Luciobarbus sclateri</i>)	50%	-	n.d.	24.3	118
	Fish (<i>Cyprinus carpio</i>)	100%	-	-	11.2	118
	Mussels	0	-	n.d.	n.d.	116
	Clam	0	-	n.d.	n.d.	116
	Marine echinoderms	100%	2.03	1.66	53.9	51
	(Holothuria tubulosa)					
Italy	Mussels	0	-	n.d.	n.d.	116
Portugal	Mullet	0	-	n.d.	n.d.	116
	Mussels	0	-	n.d.	n.d.	120
	Mussels	40%	-	n.d.	662.1	120
	Mussels	67%	-	n.d.	106.9	120
	Mussels	75%	-	n.d.	121.4	120
	Mussels	20%	-	n.d.	51.2	120
	Mussels	0	-	n.d.	n.d.	120
	Mussels	0	-	n.d.	n.d.	120
Netherlands	Flounder	0	-	n.d.	n.d.	116
New Zealand	Clams (<i>Laternula elliptica</i>)	100%	72.9	9.2	112	114
	Sea urchins (<i>Sterichinus neumayeri</i>)	100%	-	-	8.6	114
	Fish (Trematomus bernachii)	100%	9.1	<6.6	14.1	114
	Liver of fish (<i>Trematomus</i> bernachii)	100%	-	-	41.0	114

Europe	Canned Mackerel	50%	-	n.d.	5	115
	Canned Sardine	100%	-	-	55.72	115
	Canned Tuna	50%	-	n.d.	27.6	115
	Crustacean Shrimp	100%	-	-	14.7	115
	Bivalves Mussels	63.6%	-	n.d.	85.5	115
	Cephalopod Octopus	0	-	n.d.	n.d.	115
	Crustacean crab	0	-	n.d.	n.d.	115
	Fish Pangasius	0	-	n.d.	n.d.	115
	Fish Salmon	33.3%	-	n.d.	2.5	115
	Fish Seabream	50%	-	n.d.	5.0	115
	Fish perch	100%	-	-	32.3	115
	Fish cod	0	-	n.d.	n.d.	115
	Fish Mackerel	77.8%	-	n.d.	82.2	115
	Fish Monkfish	100%	-	5	98.7	115
	Fish Plaice/Sole	0	-	n.d.	n.d.	115
	Fish Tuna	50%	-	n.d.	2.5	115
France	Mussels	0	-	n.d.	n.d.	121
USA	Eastern crayfish	57.1%	23.7	n.d.	51.4	122
	Red swamp crayfish	100%	-	-	42.8	122
	Eastern oyster	100%	40.6	36.8	51.7	122
	Hooked mussel	100%	-	-	35.4	122
Norway	Codfish (liver)	46.7%	<20	<20	1037	28
	Gadus morhua					
	Codfish (liver)	53.3%	45.2	<30	68.9	28
	Gadus morhua					
	Crab	0	-	<30	<30	28
	Carcinus maenas					
	Fish burbot (<i>Lota lota</i>)	0	-	<5	<5	28
	Fish perch (Perca fluviatilis)	6.7%	-	<5	6.5	28
	Fish whitefish (Coregonus	26.7%	<20	<20	182	28
	lavaretrus)					
Switzerland	Fish	0	-	<lod< td=""><td><lod< td=""><td>73</td></lod<></td></lod<>	<lod< td=""><td>73</td></lod<>	73
	Fish (Roach) ^e	100%	92	66	118	17

White fish ^e	50%	-	<15	<120	17
Fish (perch) ^e	100	-	-	123	17
Fish (<i>Leuciscus cephalus</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
Fish (<i>Dreissena</i>	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
polymorpha) ^e					
Fish (<i>Barbus barbus</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
Fish (<i>Salmo trutta</i>) ^e	-	-	<lod< td=""><td>151</td><td>75</td></lod<>	151	75
Fish (<i>Anguilla anguilla</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
Fish (<i>Phalacrocorax sp.</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
Seafood	0	-	-	-	37
Pomfret (marine, Wild	-	-	ND	ND	123
species)					
Goby (marine, Wild species)	-	-	-	0.276	123
Flounder (marine, Wild	-	-	ND	ND	123
species)					
Osteomugil (marine, Wild	-	-	ND	ND	123
species)					
Hairtail (marine, Wild	-	-	-	0.106	123
species)					
Anchovy (marine, Wild	-	-	ND	ND	123
species)					
Arrow fish (marine, Wild	-	-	-	1.068	123
species)					
Collichthys (marine, Wild	-	-	-	0.797	123
species)					
Sleeve-fish (marine, Wild	-	-	-	0.408	123
species)					
Squilla (marine, Wild	-	-	-	1.520	123
species)					
Whelk (marine, Wild species)	-	-	ND	ND	123
Filet (marine, farmed red	-	-	-	0.59	123
snapper)					
Belly (marine, farmed red	-	-	-	0.80	123

China

snapper)					
Coral (Favites abdita) ^d	100%	14.1	8	21.8	95
Coral (<i>Porites sp.</i>) ^d	100%	11.3	4.7	38.4	95
Coral (Pavona decussata) ^d	100%	6.8	1	26.6	95
Coral (Acropora valida) ^d	100%	11.1	9.9	12.3	95
Coral (<i>Platygyra acuta</i>) ^d	100%	4.8	1	6.1	95
Fish	100%	2.96	0.68	9.99	124
Cephalopoda	100%	5.72	2.4	9.04	124
Crustacean	100%	113	69	406	124
Fish (Striped bass)	-	-	-	5.7	113
Fish (<i>Tilapia</i>)	-	-	-	5.4	113
Fish (Code)	-	-	-	3.3	113
Fish (Salmon)	-	-	-	6.9	113
Rainbow trout	20%	-	n.d.	21.0	125
Liver of lebranche mullet	100%	-	7.55	74.4	119
(Mugil liza)					
Muscle of lebranche mullet	100%	-	3.5	15.4	119
(Mugil liza)					
Gills of lebranche mullet	100%	-	3.07	24	119
(Mugil liza)					
Mussels	0	-	n.d.	n.d.	116
Clams	0	-	n.d.	n.d.	116
Marine echinoderms	0	-	n.d.	n.d.	51
(Holothuria tubulosa)					
Canned Mackerel	50%	-	n.d.	6	115
Canned Sardine	0	-	-	-	115
Canned Tuna	50%	-	n.d.	6	115
Crustacean Shrimp	0	-	n.d.	n.d.	115
Bivalves Mussels	54.5%	-	n.d.	6	115
Cephalopod Octopus	0	-	n.d.	n.d.	115
Crustacean crab	0	-	n.d.	n.d.	115
	snapper) Coral (<i>Favites abdita</i>) ^d Coral (<i>Porites sp.</i>) ^d Coral (<i>Pavona decussata</i>) ^d Coral (<i>Acropora valida</i>) ^d Coral (<i>Platygyra acuta</i>) ^d Fish Cephalopoda Crustacean Fish (<i>Striped bass</i>) Fish (<i>Tilapia</i>) Fish (<i>Code</i>) Fish (<i>Code</i>) Fish (<i>Salmon</i>) Rainbow trout Liver of lebranche mullet (<i>Mugil liza</i>) Muscle of lebranche mullet (<i>Mugil liza</i>) Gills of lebranche mullet (<i>Mugil liza</i>) Gills of lebranche mullet (<i>Mugil liza</i>) Gills of lebranche mullet (<i>Mugil liza</i>) Canned Mackerel Canned Mackerel Canned Tuna Crustacean Shrimp Bivalves Mussels Cephalopod Octopus Crustacean crab	snapper)Coral (Favites abdita)d100%Coral (Porites sp.)d100%Coral (Pavona decussata)d100%Coral (Acropora valida)d100%Coral (Platygyra acuta)d100%Coral (Platygyra acuta)d100%Cish100%Cephalopoda100%Crustacean100%Fish (Striped bass)-Fish (Striped bass)-Fish (Code)-Fish (Code)-Fish (Salmon)-Rainbow trout20%Liver of lebranche mullet100%(Mugil liza)100%Muscle of lebranche mullet100%(Mugil liza)0Gills of lebranche mullet100%(Mugil liza)0Gills of lebranche mullet0Clams0Marine echinoderms0Canned Mackerel50%Canned Sardine0Crustacean Shrimp0Bivalves Mussels54.5%Cephalopod Octopus0Crustacean crab0	snapper)Coral (Favites abdita)d100%14.1Coral (Porites $sp.$)d100%11.3Coral (Pavona decussata)d100%6.8Coral (Acropora valida)d100%11.1Coral (Platygyra acuta)d100%4.8Fish100%2.96Cephalopoda100%5.72Crustacean100%113Fish (Striped bass)Fish (Code)Fish (Code)Fish (Salmon)Rainbow trout20%-Liver of lebranche mullet100%-(Mugil liza)Gills of lebranche mullet100%-(Mugil liza)Mussels0-Canned Mackerel50%-Canned Sardine0-Canned Sardine0-Canned Tuna50%-Crustacean Shrimp0-Bivalves Mussels54.5%-Cephalopod Octopus0-Crustacean crab0-	snapper) Coral (Favites abdita) ^d 100% 14.1 8 Coral (Porites sp.) ^d 100% 11.3 4.7 Coral (Pavona decussata) ^d 100% 6.8 1 Coral (Acropora valida) ^d 100% 11.1 9.9 Coral (Platygyra acuta) ^d 100% 4.8 1 Fish 100% 2.96 0.68 Cephalopoda 100% 5.72 2.4 Crustacean 100% 11.3 69 Fish (Striped bass) - - - Fish (Code) - - - Fish (Code) - - - Fish (Code) - - - Fish (Calmon) - - - Rainbow trout 20% - n.d. Liver of lebranche mullet 100% - 3.5 (Mugil liza) - - - Muscle of lebranche mullet 100% - n.d. Clams 0 - n.d. Musrie echinoderms 0	snapper) Coral (Favites abdita) ^d 100% 14.1 8 21.8 Coral (Parites sp.) ^d 100% 11.3 4.7 38.4 Coral (Parona decussata) ^d 100% 6.8 1 26.6 Coral (Playona decussata) ^d 100% 4.8 1 6.1 Fish 100% 2.96 0.68 9.99 Cephalopoda 100% 5.72 2.4 9.04 Crustacean 100% 11.3 69 406 Fish (Striped bass) - - 5.7 Fish (Code) - - 5.4 Fish (Code) - - 6.9 Rainbow trout 20% - n.d. 21.0 Liver of lebranche mullet 100% - 3.5 15.4 (Mugil liza) - - - 6.9 Rainbow trout 20% - n.d. n.d. Muscle of lebranche mullet 100% - 3.5 15.4 (Mugil liza) - - n.d. n.d.

	Fish Salmon	33.3%	-	n.d.	6	115
	Fish Seabream	0	-	n.d.	n.d.	115
	Fish perch	0	-	n.d.	n.d.	115
	Fish cod	0	-	n.d.	n.d.	115
	Fish Mackerel	44.4%	-	n.d.	6	115
	Fish Monkfish	50%	-	n.d.	90.7	115
	Fish Plaice/Sole	0	-	n.d.	n.d.	115
	Fish Tuna	25%	-	n.d.	6	115
Italy	Mussels	0	-	n.d.	n.d.	116
Portugal	Mullet	0	-	n.d.	n.d.	116
Netherlands	Flounder	0	-	n.d.	n.d.	116
BP-8						
China	Coral (<i>Favites abdita</i>) ^d	100%	7.55	2.3	17.7	95
	Coral (<i>Porites sp.</i>)d	100%	11.3	4.4	19.9	95
	Coral (Pavona decussata) ^d	100%	6.3	1.3	15.3	95
	Coral (Acropora valida) ^d	100%	24.75	17.2	32.3	95
	Coral (<i>Platygyra acuta</i>) ^d	33.3%	<mdl< td=""><td><mdl< td=""><td>5.7</td><td>95</td></mdl<></td></mdl<>	<mdl< td=""><td>5.7</td><td>95</td></mdl<>	5.7	95
Taiwan region	Fish (Striped bass)	-	-	-	1.7	113
Ū	Fish (<i>Tilapia</i>)	-	-	-	1.5	113
	Fish (Code)	-	-	-	0.5	113
	Fish (Salmon)	-	-	-	2.4	113
Spain	Marine echinoderms	0	-	n.d.	n.d.	51
•	(Holothuria tubulosa)					
4DHB						
Spain	Andalusian barbel	0	-	n.d.	n.d.	117
	(Luciobarbus sclateri)					
	Ebro barbel (Luciobarbus	0	-	n.d.	n.d.	117
	graellsii)					
	Common carp (Cyprinus	0	-	n.d.	n.d.	117
	carpio)					
	Ebro barbel (Barbus graellsii)	0	-	n.d.	n.d.	117
	Wels catfish (Silurus glanis)	0	-	n.d.	n.d.	117
	Brown trout (Salmo trutta)	0	-	n.d.	n.d.	117

	Iberian nase (<i>Pseudochondrostoma</i> polylenis)	0	-	n.d.	n.d.	117
	Iberian gudgeon (<i>Gobio</i> <i>lozanoi</i>)	0	-	n.d.	n.d.	117
	Black bass (<i>Micropterus</i> salmoides)	0	-	n.d.	n.d.	117
	Black bass (Alburnus alburnus)	0	-	n.d.	n.d.	117
	European eel (<i>Anguila</i> anguila)	0	-	n.d.	n.d.	117
	Pike (Esox lucius)	0	-	n.d.	n.d.	117
	Pumpkinseed (<i>Leponis</i> gibbosus)	0	-	n.d.	n.d.	117
	Mediterranean barbel (<i>Barbus guiraonis</i>)	0	-	n.d.	n.d.	117
	Fish (<i>Luciobarbus sclateri</i>)	0	-	n.d.	n.d.	118
	Fish (<i>Cyprinus carpio</i>)	0	-	n.d.	n.d.	118
Switzerland	Fish (<i>Leuciscus cephalus</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (<i>Dreissena</i> polymorpha) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (<i>Barbus barbus</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (<i>Salmo trutta</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (<i>Anguilla anguilla</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
	Fish (<i>Phalacrocorax sp.</i>) ^e	0	-	<lod< td=""><td><lod< td=""><td>75</td></lod<></td></lod<>	<lod< td=""><td>75</td></lod<>	75
Brazil	Liver of lebranche mullet (<i>Mugil liza</i>)	100%	-	5.8	451	119
	Muscle of lebranche mullet (<i>Mugil liza</i>)	100%	-	4.3	17.4	119
	Gills of lebranche mullet (<i>Mugil liza</i>)	100%	-	3.29	23.5	119
4OH-BP	· • •					
Brazil	Liver of lebranche mullet	100%	-	5.47	139	119

(Mugil liza)					
Muscle of lebranche mullet	100%	-	3.02	22.6	119
(Mugil liza)					
Gills of lebranche mullet	100%	-	5.28	31.6	119
(Mugil liza)					
Andalusian barbel	0	-	n.d.	n.d.	117
(Luciobarbus sclateri)					
Ebro barbel (<i>Luciobarbus</i>	0	-	n.d.	n.d.	117
graellsii)					
Common carp (<i>Cyprinus</i>	0	-	n.d.	n.d.	117
carpio)					
Ebro barbel (Barbus graellsii)	0	-	n.d.	n.d.	117
Wels catfish (Silurus glanis)	0	-	n.d.	n.d.	117
Brown trout (Salmo trutta)	0	-	n.d.	n.d.	117
Iberian nase	0	-	n.d.	n.d.	117
(Pseudochondrostoma					
polylepis)					
Iberian gudgeon (<i>Gobio</i>	0	-	n.d.	n.d.	117
lozanoi)					
Black bass (Micropterus	0	-	n.d.	n.d.	117
salmoides)					
Black bass (Alburnus	0	-	n.d.	n.d.	117
alburnus)					
European eel (<i>Anguila</i>	0	-	n.d.	n.d.	117
anguila)					
Pike (<i>Esox lucius</i>)	0	-	n.d.	n.d.	117
Pumpkinseed (<i>Leponis</i>	0	-	n.d.	n.d.	117
gibbosus)					
Mediterranean barbel	0	-	n.d.	n.d.	117
(Barbus guiraonis)					
Fish (<i>Luciobarbus sclateri</i>)	0	-	n.d.	n.d.	118
Fish (<i>Cyprinus carpio</i>)	0	-	n.d.	n.d.	118
Marine echinoderms	0	-	n.d.	n.d.	51

Spain

(Holothuria tubulosa)

^a detection frequency;

^b lowest concentration;

^c highest concentration;

^d unit in wet weight (w.w.); ^e unit in ng g⁻¹ lipid weigh.

References

- T. Wang, M. Guo, W. Song and X. Du, A new nitrogen-containing carbon nanoparticle coated stainless steel fiber for selective solid-phase microextraction of ultraviolet filters, *Anal. Methods*, 2015, **7**, 3385–3394.
- 2 M. M. P. Tsui, H. W. Leung, P. K. S. Lam and M. B. Murphy, Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants, *Water Res.*, 2014, **53**, 58–67.
- X. Li, G. Chen, J. Liu, Y. Liu, X. Zhao, Z. Cao, L. Xia, G. Li, Z. Sun and S. Zhang, A rapid, accurate and sensitive method with the new stable isotopic tags based on microwave-assisted dispersive liquid-liquid microextraction and its application to the determination of hydroxyl UV filters in environmental water samples, *Talanta*, 2017, **167**, 242–252.
- 4 Y. Bu, J. Feng, X. Wang, Y. Tian, M. Sun and C. Luo, In situ hydrothermal growth of polyaniline coating for in-tube solid-phase microextraction towards ultraviolet filters in environmental water samples, *J. Chromatogr. A*, 2017, **1483**, 48–55.
- Y. Ho and W. Ding, Solid-phase Extraction Coupled Simple On-line Derivatization
 Gas Chromatography–Tandem Mass Spectrometry for the Determination of
 Benzophenone-type UV Filters in Aqueous Samples, *J. Chinese Chem. Soc.*,
 2012, **59**, 107–113.
- J.-W. Wu, H.-C. Chen and W.-H. Ding, Ultrasound-assisted dispersive liquid– liquid microextraction plus simultaneous silulation for rapid determination of salicylate and benzophenone-type ultraviolet filters in aqueous samples, *J. Chromatogr. A*, 2013, **1302**, 20–27.

- 7 W.-H. Chung, S.-H. Tzing and W.-H. Ding, Optimization of dispersive micro solidphase extraction for the rapid determination of benzophenone-type ultraviolet absorbers in aqueous samples, *J. Chromatogr. A*, 2015, **1411**, 17–22.
- 8 N. Negreira, I. Rodríguez, M. Ramil, E. Rubí and R. Cela, Solid-phase extraction followed by liquid chromatography–tandem mass spectrometry for the determination of hydroxylated benzophenone UV absorbers in environmental water samples, *Anal. Chim. Acta*, 2009, **654**, 162–170.
- 9 P. Gago-Ferrero, N. Mastroianni, M. S. Díaz-Cruz and D. Barceló, Fully automated determination of nine ultraviolet filters and transformation products in natural waters and wastewaters by on-line solid phase extraction–liquid chromatography–tandem mass spectrometry, *J. Chromatogr. A*, 2013, **1294**, 106– 116.
- 10 R. Celano, A. L. Piccinelli, L. Campone and L. Rastrelli, Ultra-preconcentration and determination of selected pharmaceutical and personal care products in different water matrices by solid-phase extraction combined with dispersive liquid–liquid microextraction prior to ultra high pressure liquid chromatography, *J. Chromatogr. A*, 2014, **1355**, 26–35.
- O. Golovko, V. Kumar, G. Fedorova, T. Randak and R. Grabic, Removal and seasonal variability of selected analgesics/anti-inflammatory, antihypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant, *Environ. Sci. Pollut. Res.*, 2014, **21**, 7578–7585.
- 12 B. Kasprzyk-Hordern, R. M. Dinsdale and A. J. Guwy, Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface

water and wastewater by solid-phase extraction and ultra performance liquid chromatography–electrospray tandem mass spectrometry, *Anal. Bioanal. Chem.*, 2008, **391**, 1293–1308.

- B. Kasprzyk-Hordern, R. M. Dinsdale and A. J. Guwy, The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters, *Water Res.*, 2009, **43**, 363–380.
- A. Wick, G. Fink and T. A. Ternes, Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography–tandem mass spectrometry, *J. Chromatogr. A*, 2010, **1217**, 2088–2103.
- S. C. Cunha, A. Pena and J. O. Fernandes, Dispersive liquid–liquid microextraction followed by microwave-assisted silylation and gas chromatography-mass spectrometry analysis for simultaneous trace quantification of bisphenol A and 13 ultraviolet filters in wastewaters, *J. Chromatogr. A*, 2015, 1414, 10–21.
- 16 G. A. Loraine and M. E. Pettigrove, Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California, *Environ. Sci. Technol.*, 2006, **40**, 687–695.
- M. E. Balmer, H.-R. Buser, M. D. Müller and T. Poiger, Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes, *Environ. Sci. Technol.*, 2005, **39**, 953–962.

- 18 M. Pedrouzo, F. Borrull, R. M. Marcé and E. Pocurull, Stir-bar-sorptive extraction and ultra-high-performance liquid chromatography–tandem mass spectrometry for simultaneous analysis of UV filters and antimicrobial agents in water samples, *Anal. Bioanal. Chem.*, 2010, **397**, 2833–2839.
- R. Rodil, J. B. Quintana, E. Concha-Graña, P. López-Mahía, S. Muniategui-Lorenzo and D. Prada-Rodríguez, Muniategui-Lorenzo, D. Prada-Rodríguez, Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain), *Chemosphere*, 2012, **86**, 1040–1049.
- 20 P. González-Hernández, V. Pino, J. H. Ayala and A. M. Afonso, A simplified vortex-assisted emulsification microextraction method for determining personal care products in environmental water samples by ultra-high-performance liquid chromatography, *Anal. Methods*, 2015, **7**, 1825–1833.
- 21 R. Rodil, J. B. Quintana, P. López-Mahía, S. Muniategui-Lorenzo and D. Prada-Rodríguez, Multiclass determination of sunscreen chemicals in water samples by liquid chromatography-tandem mass spectrometry, *Anal. Chem.*, 2008, **80**, 1307– 1315.
- M. J. Gómez, M. M. Gómez-Ramos, A. Agüera, M. Mezcua, S. Herrera and A. R. Fernández-Alba, A new gas chromatography/mass spectrometry method for the simultaneous analysis of target and non-target organic contaminants in waters, *J. Chromatogr. A*, 2009, **1216**, 4071–4082.
- 23 R. Rodil and M. Moeder, Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry, *J. Chromatogr. A*, 2008, **1179**, 81–88.

- M. G. Pintado-Herrera, E. González-Mazo and P. A. Lara-Martín, Atmospheric pressure gas chromatography–time-of-flight-mass spectrometry (APGC–ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE), *Anal. Chim. Acta*, 2014, **851**, 1–13.
- 25 P. Cuderman and E. Heath, Determination of UV filters and antimicrobial agents in environmental water samples, *Anal. Bioanal. Chem.*, 2007, **387**, 1343–1350.
- Y. Kameda, K. Kimura and M. Miyazaki, Occurrence and profiles of organic sunblocking agents in surface waters and sediments in Japanese rivers and lakes, *Environ. Pollut.*, 2011, **159**, 1570–1576.
- C. P. da Silva, E. S. Emídio and M. R. R. de Marchi, Method validation using weighted linear regression models for quantification of UV filters in water samples, *Talanta*, 2015, **131**, 221–227.
- K. H. Langford, M. J. Reid, E. Fjeld, S. Øxnevad and K. V Thomas, Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway, *Environ. Int.*, 2015, **80**, 1–7.
- K. Yu, B. Li and T. Zhang, Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography–tandem mass spectrometry without SPE pre-concentration, *Anal. Chim. Acta*, 2012, **738**, 59–68.
- 30 M. Ashfaq, Y. Li, Y. Wang, W. Chen, H. Wang, X. Chen, W. Wu, Z. Huang, C.-P. Yu and Q. Sun, Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China, *Water Res.*, 2017, **123**, 656–667.

- 31 W. Song, Y. Zhang, M. Guo, T. Wang, Y. Yang, X. Wang and X. Du, Rapid electrochemical preparation of porous sponge-like zinc–zinc oxide coating deposited on an etched stainless steel fiber for selective determination of UV filters in environmental water samples, *Anal. Methods*, 2015, **7**, 6619–6628.
- 32 Y. Li, Y. Yang, H. Liu, X. Wang and X. Du, Fabrication of a novel Ti–TiO 2–ZrO 2 fiber for solid-phase microextraction followed by high-performance liquid chromatography for sensitive determination of UV filters in environmental water samples, *Anal. Methods*, 2014, **6**, 8519–8525.
- M. Ma, H. Wang, Q. Zhen, M. Zhang and X. Du, Development of nitrogenenriched carbonaceous material coated titania nanotubes array as a fiber coating for solid-phase microextraction of ultraviolet filters in environmental water, *Talanta*, 2017, **167**, 118–125.
- 34 M. Ma, H. Wang, M. Zhang, Q. Zhen and X. Du, Facile fabrication of polyaniline coated titania nanotube arrays as fiber coatings for solid phase microextraction coupled to high performance liquid chromatography for sensitive determination of UV filters in environmental water samples, *Anal. Methods*, 2017, **9**, 211–221.
- 35 S. D. Kim, J. Cho, I. S. Kim, B. J. Vanderford and S. A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters, *Water Res.*, 2007, **41**, 1013–1021.
- 36 K. Y. Kim, K. I. Ekpeghere, H.-J. Jeong and J.-E. Oh, Effects of the summer holiday season on UV filter and illicit drug concentrations in the Korean wastewater system and aquatic environment, *Environ. Pollut.*, 2017, **227**, 587– 595.

- 37 C. Han, B. Xia, X. Chen, J. Shen, Q. Miao and Y. Shen, Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS, *Food Chem.*, 2016, **194**, 1199–1207.
- 38 Y.-S. Liu, G.-G. Ying, A. Shareef and R. S. Kookana, Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant, *Environ. Pollut.*, 2012, **165**, 225–232.
- Y.-S. Liu, G.-G. Ying, A. Shareef and R. S. Kookana, Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatography–tandem mass spectrometry, *J. Chromatogr.* A, 2011, **1218**, 5328–5335.
- 40 R. Rodil, S. Schrader and M. Moeder, Non-porous membrane-assisted liquid– liquid extraction of UV filter compounds from water samples, *J. Chromatogr. A*, 2009, **1216**, 4887–4894.
- E. Magi, M. Di Carro, C. Scapolla and K. T. N. Nguyen, Stir bar sorptive extraction and LC–MS/MS for trace analysis of UV filters in different water matrices, *Chromatographia*, 2012, **75**, 973–982.
- 42 E. Magi, C. Scapolla, M. Di Carro, P. Rivaro and K. T. N. Nguyen, Emerging pollutants in aquatic environments: monitoring of UV filters in urban wastewater treatment plants, *Anal. Methods*, 2013, **5**, 428–433.
- 43 Z. Zhang, N. Ren, Y.-F. Li, T. Kunisue, D. Gao and K. Kannan, Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge, *Environ. Sci. Technol.*, 2011, **45**, 3909–3916.
- 44 H.-K. Jeon, Y. Chung and J.-C. Ryu, Simultaneous determination of

benzophenone-type UV filters in water and soil by gas chromatography–mass spectrometry, *J. Chromatogr. A*, 2006, **1131**, 192–202.

- F. Mao, L. You, M. Reinhard, Y. He and K. Y.-H. Gin, Occurrence and fate of benzophenone-type UV filters in a tropical urban watershed, *Environ. Sci. Technol.*, 2018, **52**, 3960–3967.
- 46 M. Badia-Fabregat, C. E. Rodríguez-Rodríguez, P. Gago-Ferrero, A. Olivares, B. Piña, M. S. Díaz-Cruz, T. Vicent, D. Barceló and G. Caminal, Degradation of UV filters in sewage sludge and 4-MBC in liquid medium by the ligninolytic fungus Trametes versicolor, *J. Environ. Manage.*, 2012, **104**, 114–120.
- 47 C. E. Rodríguez-Rodríguez, E. Barón, P. Gago-Ferrero, A. Jelić, M. Llorca, M. Farré, M. S. Díaz-Cruz, E. Eljarrat, M. Petrović and G. Caminal, Removal of pharmaceuticals, polybrominated flame retardants and UV-filters from sludge by the fungus Trametes versicolor in bioslurry reactor, *J. Hazard. Mater.*, 2012, 233, 235–243.
- 48 P. Gago-Ferrero, M. S. Díaz-Cruz and D. Barceló, Fast pressurized liquid extraction with in-cell purification and analysis by liquid chromatography tandem mass spectrometry for the determination of UV filters and their degradation products in sediments, *Anal. Bioanal. Chem.*, 2011, **400**, 2195–2204.
- 49 L. Mandaric, E. Diamantini, E. Stella, K. Cano-Paoli, J. Valle-Sistac, D. Molins-Delgado, A. Bellin, G. Chiogna, B. Majone and M. S. Diaz-Cruz, Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism, *Sci. Total Environ.*, 2017, **590**, 484– 494.

- C. Sánchez-Brunete, E. Miguel, B. Albero and J. L. Tadeo, Analysis of salicylate and benzophenone-type UV filters in soils and sediments by simultaneous extraction cleanup and gas chromatography–mass spectrometry, *J. Chromatogr. A*, 2011, **1218**, 4291–4298.
- 51 J. Martín, A. Zafra-Gómez, F. Hidalgo, A. J. Ibáñez-Yuste, E. Alonso and J. L. Vilchez, Multi-residue analysis of 36 priority and emerging pollutants in marine echinoderms (Holothuria tubulosa) and marine sediments by solid-liquid extraction followed by dispersive solid phase extraction and liquid chromatography–tandem mass spectrometry anal, *Talanta*, 2017, **166**, 336–348.
- 52 F. J. Camino-Sánchez, A. Zafra-Gómez, N. Dorival-García, B. Juárez-Jiménez and J. L. Vílchez, Determination of selected parabens, benzophenones, triclosan and triclocarban in agricultural soils after and before treatment with compost from sewage sludge: A lixiviation study, *Talanta*, 2016, **150**, 415–424.
- 53 N. Negreira, I. Rodriguez, E. Rubí and R. Cela, Optimization of pressurized liquid extraction and purification conditions for gas chromatography–mass spectrometry determination of UV filters in sludge, *J. Chromatogr. A*, 2011, **1218**, 211–217.
- P. Gago-Ferrero, M. S. Díaz-Cruz and D. Barceló, Occurrence of multiclass UV filters in treated sewage sludge from wastewater treatment plants, *Chemosphere*, 2011, 84, 1158–1165.
- 55 M. Li, Q. Sun, Y. Li, M. Lv, L. Lin, Y. Wu, M. Ashfaq and C. Yu, Simultaneous analysis of 45 pharmaceuticals and personal care products in sludge by matrix solid-phase dispersion and liquid chromatography tandem mass spectrometry, *Anal. Bioanal. Chem.*, 2016, **408**, 4953–4964.

- 56 X. Peng, S. Xiong, W. Ou, Z. Wang, J. Tan, J. Jin, C. Tang, J. Liu and Y. Fan, Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China, *J. Hazard. Mater.*, 2017, **323**, 139–146.
- 57 E. Barón, P. Gago-Ferrero, M. Gorga, I. Rudolph, G. Mendoza, A. M. Zapata, S. Díaz-Cruz, R. Barra, W. Ocampo-Duque and M. Páez, Occurrence of hydrophobic organic pollutants (BFRs and UV-filters) in sediments from South America, *Chemosphere*, 2013, **92**, 309–316.
- R. Rodil and M. Moeder, Development of a simultaneous pressurised-liquid extraction and clean-up procedure for the determination of UV filters in sediments, *Anal. Chim. Acta*, 2008, 612, 152–159.
- 59 R. Rodil, S. Schrader and M. Moeder, Pressurised membrane-assisted liquid extraction of UV filters from sludge, *J. Chromatogr. A*, 2009, **1216**, 8851–8858.
- M. B. R. Cerqueira, J. R. Guilherme, S. S. Caldas, M. L. Martins, R. Zanella and E.
 G. Primel, Evaluation of the QuEChERS method for the extraction of pharmaceuticals and personal care products from drinking-water treatment sludge with determination by UPLC-ESI-MS/MS, *Chemosphere*, 2014, **107**, 74–82.
- 61 L. Ye, J. Liu, X. Yang, Y. Peng and L. Xu, Orthogonal array design for the optimization of ionic liquid-based dispersive liquid–liquid microextraction of benzophenone-type UV filters, *J. Sep. Sci.*, 2011, **34**, 700–706.
- 62 H. Sun, Y. Li, C. Huang, J. Peng, J. Yang, X. Sun, S. Zang, J. Chen and X. Zhang, Solid-phase extraction based on a molecularly imprinted polymer for the selective determination of four benzophenones in tap and river water, *J. Sep. Sci.*, 2015, **38**,

3412–3420.

- 63 M. Wu, D. Xie, G. Xu, R. Sun, X. Xia, W. Liu and L. Tang, Benzophenone-type UV filters in surface waters: An assessment of profiles and ecological risks in Shanghai, China, *Ecotoxicol. Environ. Saf.*, 2017, **141**, 235–241.
- T. Zhang, J.-F. Guo, L. Bai, Z.-G. Shi and L.-M. Qi, Retrieval of the Extraction Solvent by Magnetic Particles for Dispersive Liquid–Liquid Microextraction of UV
 Filters, *J. Liq. Chromatogr. Relat. Technol.*, 2015, **38**, 104–110.
- M. M. P. Tsui, H. W. Leung, T.-C. Wai, N. Yamashita, S. Taniyasu, W. Liu, P. K. S. Lam and M. B. Murphy, Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries, *Water Res.*, 2014, **67**, 55–65.
- A. Jurado, P. Gago-Ferrero, E. Vàzquez-Suñé, J. Carrera, E. Pujades, M. S.
 Díaz-Cruz and D. Barceló, Urban groundwater contamination by residues of UV filters, *J. Hazard. Mater.*, 2014, **271**, 141–149.
- M. P. Serra-Roig, A. Jurado, M. S. Díaz-Cruz, E. Vázquez-Suñé, E. Pujades and D. Barceló, Occurrence, fate and risk assessment of personal care products in river–groundwater interface, *Sci. Total Environ.*, 2016, **568**, 829–837.
- S. Piovesana, A. L. Capriotti, C. Cavaliere, G. La Barbera, R. Samperi, R. Z. Chiozzi and A. Laganà, A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography–tandem mass spectrometry analysis, *Anal. Bioanal. Chem.*, 2017, 1–14.
- D. Ge and H. K. Lee, A new 1-hexyl-3-methylimidazolium tris (pentafluoroethyl)

trifluorophosphate ionic liquid based ultrasound-assisted emulsification microextraction for the determination of organic ultraviolet filters in environmental water samples, *J. Chromatogr. A*, 2012, **1251**, 27–32.

- A. L. Capriotti, C. Cavaliere, S. Piovesana, R. Samperi, S. Stampachiacchiere, S. Ventura and A. Laganà, Multiresidue determination of UV filters in water samples by solid-phase extraction and liquid chromatography with tandem mass spectrometry analysis, *J. Sep. Sci.*, 2014, **37**, 2882–2891.
- 71 B. Kasprzyk-Hordern, R. M. Dinsdale and A. J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK, *Water Res.*, 2008, **42**, 3498–3518.
- K. Fisch, J. J. Waniek and D. E. Schulz-Bull, Occurrence of pharmaceuticals and UV-filters in riverine run-offs and waters of the German Baltic Sea, *Mar. Pollut. Bull.*, 2017, **124**, 388–399.
- A. Zenker, H. Schmutz and K. Fent, Simultaneous trace determination of nine organic UV-absorbing compounds (UV filters) in environmental samples, *J. Chromatogr. A*, 2008, **1202**, 64–74.
- M. Kawaguchi, R. Ito, H. Honda, N. Endo, N. Okanouchi, K. Saito, Y. Seto and H. Nakazawa, Simultaneous analysis of benzophenone sunscreen compounds in water sample by stir bar sorptive extraction with in situ derivatization and thermal desorption–gas chromatography–mass spectrometry, *J. Chromatogr. A*, 2008, 1200, 260–263.
- 75 K. Fent, A. Zenker and M. Rapp, Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland, *Environ. Pollut.*, 2010, **158**, 1817–1824.

- T. Poiger, H.-R. Buser, M. E. Balmer, P.-A. Bergqvist and M. D. Müller,
 Occurrence of UV filter compounds from sunscreens in surface waters: regional
 mass balance in two Swiss lakes, *Chemosphere*, 2004, **55**, 951–963.
- P. Román, A. Chisvert and A. Canals, Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography– mass spectrometry for UV-filter determination in water samples, *J. Chromatogr. A*, 2011, **1218**, 2467–2475.
- L. Vidal, A. Chisvert, A. Canals and A. Salvador, Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples, *Talanta*, 2010, 81, 549–555.
- M. Vila, M. Celeiro, J. P. Lamas, C. Garcia-Jares, T. Dagnac and M. Llompart, Simultaneous in-vial acetylation solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the analysis of multiclass organic UV filters in water, *J. Hazard. Mater.*, 2017, **323**, 45–55.
- M. Vila, M. Celeiro, J. P. Lamas, T. Dagnac, M. Llompart and C. Garcia-Jares, Determination of fourteen UV filters in bathing water by headspace solid-phase microextraction and gas chromatography-tandem mass spectrometry, *Anal. Methods*, 2016, **8**, 7069–7079.
- 81 C. Corada-Fernández, L. Candela, N. Torres-Fuentes, M. G. Pintado-Herrera, M. Paniw and E. González-Mazo, Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain), *Sci. Total Environ.*, 2017, **605**, 770–783.

- J. L. Benedé, A. Chisvert, D. L. Giokas and A. Salvador, Determination of ultraviolet filters in bathing waters by stir bar sorptive–dispersive microextraction coupled to thermal desorption–gas chromatography–mass spectrometry, *Talanta*, 2016, **147**, 246–252.
- Y. Zhang and H. K. Lee, Ionic liquid-based ultrasound-assisted dispersive liquid– liquid microextraction followed high-performance liquid chromatography for the determination of ultraviolet filters in environmental water samples, *Anal. Chim. Acta*, 2012, **750**, 120–126.
- H. Zhang and H. K. Lee, Simultaneous determination of ultraviolet filters in aqueous samples by plunger-in-needle solid-phase microextraction with graphene-based sol–gel coating as sorbent coupled with gas chromatography– mass spectrometry, *Anal. Chim. Acta*, 2012, **742**, 67–73.
- 85 L. You, V. T. Nguyen, A. Pal, H. Chen, Y. He, M. Reinhard and K. Y.-H. Gin, Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors, *Sci. Total Environ.*, 2015, **536**, 955–963.
- 86 C. P. da Silva, E. S. Emídio and M. R. R. de Marchi, *J. Braz.* UV filters in water samples: experimental design on the SPE optimization followed by GC-MS/MS analysis, *Chem. Soc.*, 2013, **24**, 1433–1441.
- M. Mei and X. Huang, Online analysis of five organic UV filters in environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction coupled with high-performance liquid chromatography, *J. Chromatogr. A*, 2017, **1525**, 1–9.

- H. Liu, L. Liu, Y. Xiong, X. Yang and T. Luan, Simultaneous determination of UV filters and polycyclic musks in aqueous samples by solid-phase microextraction and gas chromatography–mass spectrometry, *J. Chromatogr. A*, 2010, **1217**, 6747–6753.
- J. Li, L. Ma, M. Tang and L. Xu, C 12-Ag wire as solid-phase microextraction fiber for determination of benzophenone ultraviolet filters in river water, *J. Chromatogr. A*, 2013, **1298**, 1–8.
- 90 L. Li, R. Guo, Y. Li, M. Guo, X. Wang and X. Du, In situ growth and phenyl functionalization of titania nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water samples followed by high performance liquid chromatography–UV detection, *Anal. Chim. Acta*, 2015, **867**, 38–46.
- 91 P.-P. Zhang, Z.-G. Shi, Q.-W. Yu and Y.-Q. Feng, A new device for magnetic stirring-assisted dispersive liquid–liquid microextraction of UV filters in environmental water samples, *Talanta*, 2011, **83**, 1711–1715.
- M. Moeder, S. Schrader, U. Winkler and R. Rodil, At-line microextraction by packed sorbent-gas chromatography–mass spectrometry for the determination of UV filter and polycyclic musk compounds in water samples, *J. Chromatogr. A*, 2010, **1217**, 2925–2932.
- 93 K. Grabicova, G. Fedorova, V. Burkina, C. Steinbach, H. Schmidt-Posthaus, V. Zlabek, H. K. Kroupova, R. Grabic and T. Randak, Presence of UV filters in surface water and the effects of phenylbenzimidazole sulfonic acid on rainbow trout (Oncorhynchus mykiss) following a chronic toxicity test, *Ecotoxicol. Environ. Saf.*, 2013, **96**, 41–47.

- 94 C. Aristizabal-Ciro, A. M. Botero-Coy, F. J. López and G. A. Peñuela, Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply, *Environ. Sci. Pollut. Res.*, 2017, **24**, 7335–7347.
- M. M. P. Tsui, J. C. W. Lam, T. Y. Ng, P. O. Ang, M. B. Murphy and P. K.-S. Lam,
 Occurrence, distribution and fate of organic UV filters in coral communities,
 Environ. Sci. Technol., 2017, **51**, 4182–4190.
- 96 I. Tarazona, A. Chisvert, Z. León and A. Salvador, Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry, *J. Chromatogr. A*, 2010, **1217**, 4771–4778.
- Y. Ekowati, G. Buttiglieri, G. Ferrero, J. Valle-Sistac, M. S. Diaz-Cruz, D. Barceló,
 M. Petrovic, M. Villagrasa, M. D. Kennedy and I. Rodríguez-Roda, Occurrence of
 pharmaceuticals and UV filters in swimming pools and spas, *Environ. Sci. Pollut. Res.*, 2016, 23, 14431–14441.
- C. A. Downs, E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein,
 F. Ciner, R. Jeger, Y. Lichtenfeld, C. Woodley, P. Pennington, K. Cadenas, A.
 Kushmaro and Y. Loya, *Arch.* Toxicopathological Effects of the Sunscreen UV
 Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary
 Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands, *Environ. Contam. Toxicol.*, 2016, **70**, 265–288.
- 99 J. L. Benedé, A. Chisvert, D. L. Giokas and A. Salvador, Development of stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles and its analytical application to the determination of hydrophobic organic compounds in

aqueous media, J. Chromatogr. A, 2014, **1362**, 25–33.

- 100 S. Clavijo, J. Avivar, R. Suárez and V. Cerdà, In-syringe magnetic stirringassisted dispersive liquid–liquid microextraction and silylation prior gas chromatography–mass spectrometry for ultraviolet filters determination in environmental water samples, *J. Chromatogr. A*, 2016, **1443**, 26–34.
- 101 A. S. Rodríguez, M. R. Sanz and J. R. B. Rodríguez, Occurrence of eight UV filters in beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment, *Chemosphere*, 2015, **131**, 85–90.
- 102 M. Roldán-Pijuán, R. Lucena, S. Cárdenas and M. Valcárcel, Micro-solid phase extraction based on oxidized single-walled carbon nanohorns immobilized on a stir borosilicate disk: application to the preconcentration of the endocrine disruptor benzophenone-3, *Microchem. J.*, 2014, **115**, 87–94.
- M. S. Díaz-Cruz, P. Gago-Ferrero, M. Llorca and D. Barceló, Analysis of UV filters in tap water and other clean waters in Spain, *Anal. Bioanal. Chem.*, 2012, 402, 2325–2333.
- 104 R. Suárez, S. Clavijo, J. Avivar and V. Cerdà, On-line in-syringe magnetic stirring assisted dispersive liquid–liquid microextraction HPLC–UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant, *Talanta*, 2016, **148**, 589–595.
- Y. Tashiro and Y. Kameda, Concentration of organic sun-blocking agents in seawater of beaches and coral reefs of Okinawa Island, Japan, *Mar. Pollut. Bull.*, 2013, **77**, 333–340.
- 106 Y. Zhang and H. K. Lee, Determination of ultraviolet filters in environmental water

samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction, *J. Chromatogr. A*, 2013, **1271**, 56–61.

- 107 A. Rostvall, Evaluation of sorption materials for the removal of organic micropollutants in domestic wastewater and their potential infiltration in groundwater, 2017.
- 108 K. T. N. Nguyen, C. Scapolla, M. Di Carro and E. Magi, Rapid and selective determination of UV filters in seawater by liquid chromatography–tandem mass spectrometry combined with stir bar sorptive extraction, *Talanta*, 2011, **85**, 2375– 2384.
- 109 A. Goksøyr, K. E. Tollefsen, M. Grung, K. Løken, E. Lie, A. Zenker, K. Fent, M. Schlabach and S. Huber, Balsa raft crossing the Pacific finds low contaminant levels, *Environ. Sci. Technol.*, 2009, **43**, 4783–4790.
- 110 D. L. Giokas, V. A. Sakkas and T. A. Albanis, Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography–photodiode array detection and gas chromatography–mass spectrometry, *J. Chromatogr. A*, 2004, **1026**, 289–293.
- 111 D. A. Lambropoulou, D. L. Giokas, V. A. Sakkas, T. A. Albanis and M. I. Karayannis, Gas chromatographic determination of 2-hydroxy-4methoxybenzophenone and octyldimethyl-p-aminobenzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction, *J. Chromatogr. A*, 2002, **967**, 243–253.
- 112 D. L. Giokas, V. A. Sakkas, T. A. Albanis and D. A. Lampropoulou, Determination of UV-filter residues in bathing waters by liquid chromatography UV-diode array

and gas chromatography–mass spectrometry after micelle mediated extractionsolvent back extraction, *J. Chromatogr. A*, 2005, **1077**, 19–27.

- 113 D.-Y. Tsai, C.-L. Chen and W.-H. Ding, Optimization of matrix solid-phase dispersion for the rapid determination of salicylate and benzophenone-type UV absorbing substances in marketed fish, *Food Chem.*, 2014, **154**, 211–216.
- 114 P. Emnet, S. Gaw, G. Northcott, B. Storey and L. Graham, Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base, *Environ. Res.*, , DOI:10.1016/j.envres.2014.10.019.
- 115 S. C. Cunha, L. Trabalón, S. Jacobs, M. Castro, M. Fernandez-Tejedor, K. Granby, W. Verbeke, C. Kwadijk, F. Ferrari and J. Robbens, UV-filters and musk fragrances in seafood commercialized in Europe Union: Occurrence, risk and exposure assessment, *Environ. Res.*, 2018, **161**, 399–408.
- 116 S. C. Cunha, J. O. Fernandes, L. Vallecillos, G. Cano-Sancho, J. L. Domingo, E. Pocurull, F. Borrull, A. L. Maulvault, F. Ferrari and M. Fernandez-Tejedor, Co-occurrence of musk fragrances and UV-filters in seafood and macroalgae collected in European hotspots, *Environ. Res.*, 2015, **143**, 65–71.
- 117 P. Gago-Ferrero, M. S. Díaz-Cruz and D. Barceló, UV filters bioaccumulation in fish from Iberian river basins, *Sci. Total Environ.*, 2015, **518–519**, 518–525.
- P. Gago-Ferrero, M. S. Díaz-Cruz and D. Barceló, Multi-residue method for trace level determination of UV filters in fish based on pressurized liquid extraction and liquid chromatography–quadrupole-linear ion trap-mass spectrometry, *J. Chromatogr. A*, 2013, **1286**, 93–101.

- D. Molins-Delgado, R. Muñoz, S. Nogueira, M. B. Alonso, J. P. Torres, O. Malm,
 R. L. Ziolli, R. A. Hauser-Davis, E. Eljarrat and D. Barceló, Occurrence of organic
 UV filters and metabolites in lebranche mullet (Mugil liza) from Brazil, *Sci. Total Environ.*, 2018, **618**, 451–459.
- 120 M. Castro, J. O. Fernandes, A. Pena and S. C. Cunha, Occurrence, profile and spatial distribution of UV-filters and musk fragrances in mussels from Portuguese coastline, *Mar. Environ. Res.*, 2018, **138**, 110–118.
- M. Picot-Groz, H. Fenet, M. J. M. Bueno, D. Rosain and E. Gomez, Diurnal variations in personal care products in seawater and mussels at three Mediterranean coastal sites, *Environ. Sci. Pollut. Res.*, 2018, 1–9.
- K. He, A. Timm and L. Blaney, Simultaneous determination of UV-filters and estrogens in aquatic invertebrates by modified Quick, Easy, Cheap, Effective, Rugged, and Safe extraction and liquid chromatography tandem mass spectrometry, *J. Chromatogr. A*, 2017, **1509**, 91–101.
- 123 X. Peng, J. Jin, C. Wang, W. Ou and C. Tang, Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography–tandem mass spectrometry, *J. Chromatogr. A*, 2015, **1384**, 97–106.
- 124 X. Peng, Y. Fan, J. Jin, S. Xiong, J. Liu and C. Tang, Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea, *Environ. Pollut.*, 2017, **225**, 55–65.
- 125 M. Meinerling and M. Daniels, A validated method for the determination of traces of UV filters in fish using LC–MS/MS, *Anal. Bioanal. Chem.*, 2006, **386**, 1465–

1473.