Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2018

- 1 Supporting information
- 2 Assessment of an Electropositive GranuleMediafilter for concentrating viruses
- 3 from large volumes of coastalwater
- 4 Jing Miao^{a,†}, Han-Ji Jiang^{a,†}, Zhong-Wei Yang^a, Dan-yang Shi^a, Dong Yang^a, Zhi-
- 5 QiangShen^a, Jing Yin^a, Zhi-Gang Qiu^a, Hua-Ran Wang^a, Jun-Wen Li^a, Min Jin^{a,*}
- 6 ^a Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk
- 7 Assessment and Control for Environment & Food Safety, Tianjin 300050, China
- 8 *Corresponding author email address: jinminzh@126.com(Min Jin).
- 9 [†]Contributed equally to this work.

10 Figure legends

FigureS1 Standard curve (HRV). Fluorescent amplification curves of qPCR for RNA
standards of HRV with concentrations of 1.18×10⁷ copies/µl ~ 1.18 copies/µl from left
to right (a), and the corresponding standard curve for HRV RNA (Y=-3.359X+40.050).
The linear regression coefficient (r²) is 0.999 (b). Water was used as a non-template
control.

16 **Figure S2Standard curve (HuNoV GII).** Fluorescent amplification curves of qPCR 17 for RNA standards of HuNoV GII with concentrations of 1.2×10^7 copies/µl ~ 12 18 copies/µl from left to right (a), and the corresponding standard curve for HuNoV GII 19 RNA (Y=-3.180X+39.245). The linear regression coefficient (r²) is 0.991 (b). Water 20 was used as a non-template control.

Figure S3 Standard curve (EnV). Fluorescent amplification curves of qPCR for RNA
standards of EnV with concentrations of 5.88×10⁷ copies/µl ~5.88copies/µl from left to
right (a), and the corresponding standard curve for EnVs RNA (Y =-3.002X+37.989).
The linear regression coefficient (r²) is 0.998 (b). Water was used as a non-template
control (gray lines).

Figure S4 Standard curve (AstV).Fluorescent amplification curves of qPCR for RNA
standards of AstV with concentrations of 1.83×10⁷ copies/µl ~1.83copies/µl from left
to right (a), and the corresponding standard curve for AstV RNA (Y =-3.571X+42.941).
The linear regression coefficient (r²) is 0.990 (b). Water was used as a non-template
control (gray lines).

31 FigureS5 Standard curve (HAdV). Fluorescent amplification curves of qPCR for

32 plasmid standards of HAdV with concentrations of 4.3×10^7 copies/µl ~ 4.3 copies/µl 33 from left to right (a), and the corresponding standard curve for HAdV (Y=-34 3.566X+44.258). The linear regression coefficient (r²) is 0.995 (b). Water was used as 35 a non-template control.

36 Figure S6 Standard curve (HCV).Fluorescent amplification curves of qPCR for 37 plasmid standards of HCV with concentrations of 2.3×10^7 copies/ μ l ~ 2.3 copies/ μ l 38 from left to right (a), and the corresponding standard curve for HCV (Y=-39 3.263X+47.251). The linear regression coefficient (r²) is 0.990 (b). Water was used as 40 a non-template control.

41

42 Table legends

43 Table S1. Primers and probes used in this study

50 Figure S3

54 Figure S5

56 Figure S6

Table S1

Targets	Primers or probes	Sequences(5'-3')	Product	Reference
			length (bp)	
HRVs	RV-Pf	ACCATCTACACATGACCCTC	87	36
	RV-Pr	GGTCACATAACGCCCC		
	RV-TaqMan	FAM-ATGAGCACAATAGTTAAAAGCTAACACTGTCAA-TAMRA		
EnVs	EV-Pf	GATTGTCACCATAAGCAGC-	148	35
	EV-Pr	CCCCTGAATGCGGCTAATC		
	EV-TaqMan	FAM-CGGAACCGACTACTTTGGGTGTCCGT-BHQ1		
AstVs	AST-Q-F	CCGAGTAGGATCGAGGGT	90	34
	AST-Q-R	GCTTCTGATTAAATCAATTTTAA		
	AST- TaqMan	FAM-CTTTTCTGTCTCTGTTTAGATTATTTTAATCACC-TAMRA		
HuNoVs	COG-II-F	CARGARBCNATGTTYAGRTGGATGAG	98	33
	COG-II-R	TCGACGCCATCTTCATTCACA		
	RING2- TaqMan	FAM-TGGGAGGGCGATCGCAATCT-TAMRA		
HAdVs	EAdV- JTVXF	GGACGCCTCGGAGTACCTGAG	88	32
	EAdV- JTVXR	ACIGTGGGGTTTCTGAACTTGTT		
	EAdV-TaqMan	6-FAM-CTGGTGCAGTTCGCCCGTGCCA-BHQ		
HCVs	CV-F2	ATGGCGTTAGTATGAGTGTCGT	223	37
	CV-R2	CAAGCACCCTATCAGGCAGT		
	CV- TaqMan	FAM-CCATAGTGGTCTGCGGAACCGGT/139-161-TAMRA		