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Explanation of sizing methods for the rainwater storage tank

1. Simplified methods

In this category, four methods suggested by institutions were applied: a) Portuguese 

Association for Quality and Efficiency in Building Services (ANQIP), b) German Institute 

for Standardization (DIN), c) Environmental Agency (EA), and d) International Water and 

Sanitation Centre (IRC). These methods are defined by relationships between easily 

measured variables. Table 1 includes a description of the methods.

Values adopted during storage volume simulation, using simplified methods were 

taken as suggested by the respective guides (ANQIP, 2015; DIN 2002; EA, 2010, IRC, 

2007) and consistent with the definitions for the study sites.

Table 1. Simplified methods used for storage tank sizing

Method Description Equation Variables

ANQIP

It is used for sizing tanks where 
consumption is nearly uniform and 
residence times range between 20 and 
30 days, except when the desired end-
use is irrigation (90 days).

𝑉 = 𝑀𝑖𝑛 {𝑉1 𝑜 𝑉2}
𝑉1 = (0.0015 ∗ 𝑁) ∗ 𝑃 ∗ 𝐴
𝑉1 = (𝑍1) ∗ 𝑃 ∗ 𝐴
𝑉2 = (0.003 ∗ 𝑁) ∗ 𝑈 ∗ 𝐶𝐴𝐸
𝑉2 = (𝑍2) ∗ 𝑈 ∗ 𝐶𝐴𝐸

DIN It is used for sizing tanks from small-
scale systems.

EA1 Like DIN (2002), with an exception on 
the calculation percentage.

𝑉 = 𝑀𝑖𝑛 {𝑉1 𝑜 𝑉2}
𝑉1 = (𝐶 ∗ 𝜂 ∗ 0.06) ∗ 𝑃 ∗ 𝐴
𝑉1 = (𝑍3) ∗ 𝑃 ∗ 𝐴
𝑉2 = (0.06) ∗ 𝑈 ∗ 𝐶𝐴𝐸
𝑉2 = (𝑍4) ∗ 𝑈 ∗ 𝐶𝐴𝐸

IRC

It is designed to store 80% of the 
rainwater captured and assumed that 
the user adopts an adaptive demand 
strategy (i.e. uses one third more water 
per day when the tank is close to 
overflow and uses one third less per 
day when the tank is almost empty).

𝑉 = (𝐶 ∗ 𝑘 ∗ 𝜂 ∗
1

365) ∗ 𝑃 ∗ 𝐴

𝑉 = (𝑍7) ∗ 𝑃 ∗ 𝐴

V: storage tank volume (L)
V1: annual rainwater yield 
(L)
V2: annual required volume 
(L)
N: maximum number of 
retention days (i.e. 20 to 30 
days)
A: catchment area (m2)
U: inhabitants per household
P: mean multi-annual 
rainfall (mm)
CAE: annual percapita 
demand (L)
Ƞ: hydraulic coefficient of 
filter efficiency
C: runoff coefficient
k: factor that depends on the 
climatic zone and the design 
objective (was set at 8 days)
Zi: empirical constant 
characteristic of each 
method

Note: 1 in the case of EA, only the coefficient changes (i.e. 0.05 by 0.06) and the empirical constant 

Zi are presented.



2. Continuous simulation of mass balance methods

In this category, five methods were tested: Yield After Storage (YAS), Yield Before 

Storage (YBS), theta (θ), Ghisi (via the computer model Neptune), and Rippl. In these 

methods, changes in water storage in a previously fixed tank volume were selected through 

mass balance equations (Liaw & Tsai, 2004). Except for the Rippl method, for all 

continuous simulations, system performance was assessed through efficiency for different 

tank sizes. All the models addressed correspond to continuous simulations performed on a 

daily scale, differing in the mass balance equation that describes the behaviour of the 

amount of water stored, which for the initial interval was assumed to be zero (i.e.  

simulations assumed tank starts empty).

a) YAS, YBS and θ:

Three water balance equations known as YAS, YBS and a general form for the parameter θ 

were applied (Fewkes, 1999b). The YAS equation consists of removing the demand after 

the rain has been added to the tank and the spill has occurred, while the YBS equation 

assumes that the demand is removed before the spill occurs. The last simulation algorithm 

was a generalized equation for the variable θ, which can take values between zero (i.e. 

YAS) and one (i.e. YBS). This variable was defined with a value of 0.5 to represent an 

intermediate method between YAS and YBS. Table 2 presents the mass balance equations 

for storage tank sizing.

Table 2. Methods of continuous simulation of mass balance used for storage tank sizing – 

YAS, YBS and θ methods
Method Equation Variables

YAS

𝑄𝑡 = 𝑃𝑡 ∗ 𝐴 ∗ 𝐶

𝑌𝑡 = 𝑀𝑖𝑛 { 
𝐷𝑡,

𝑉𝑡 ‒ 1, }
𝑉𝑡 = 𝑀𝑖𝑛 { 

𝑉𝑡 ‒ 1 + 𝑄𝑡 ‒ 𝑌𝑡,
𝑆 ‒ 𝑌𝑡,

 }

YBS

𝑄𝑡 = 𝑃𝑡 ∗ 𝐴 ∗ 𝐶

𝑌𝑡 = 𝑀𝑖𝑛 { 
𝐷𝑡,

𝑉𝑡 ‒ 1 + 𝑄𝑡,
 }

𝑉𝑡 = 𝑀𝑖𝑛 { 𝑉𝑡 ‒ 1 + 𝑄𝑡 ‒ 𝑌𝑡,
𝑆,  }

Θ 𝑄𝑡 = 𝑃𝑡 ∗ 𝐴 ∗ 𝐶

t: time interval (day)
Pt: rainfall in the time interval t (mm)
A: catchment area (m2)
C: runoff coefficient
Qt: water collected in the time interval t (L)
Vt: storage volume at the end of the time 
interval t (L)
Yt: rainwater delivered by the tank during the 
time interval t (L)
Dt: rainwater demand for the time interval t 
(L)



𝑌𝑡 = 𝑀𝑖𝑛 { 
𝐷𝑡,

𝑉𝑡 ‒ 1 + 𝜃 ∗ 𝑄𝑡,
 }

𝑉𝑡 = 𝑀𝑖𝑛 { 
(𝑉𝑡 ‒ 1 + 𝑄𝑡 ‒ 𝜃 ∗ 𝑌𝑡) ‒ (1 ‒ 𝜃) ∗ 𝑌𝑡,

𝑆 ‒ (1 ‒ 𝜃) ∗ 𝑌𝑡.
 }

Efficiency 𝐸(%) = 100 ∗
∑𝑌𝑡

∑𝐷𝑡

S: tank volume (L)
Vt-1: storage volume at the end of the previous 
time interval t-1 (L)
θ: parameter whose value ranges from zero to 
one
E: efficiency in potable water savings (%)

b) Neptune

Ghisi et al. (2007) proposed the computer program Neptune to estimate the potential for 

potable water savings in four states of the Southeast region of Brazil. Table 3 describes the 

water balance equations to assess tank level behaviour over time (Ghisi & Marcel, 2014).

Table 3. Methods of continuous simulation of mass balance used for storage tank sizing – 

Neptune method.
Method Equation Variables

Neptune

𝑉𝑡
𝑎𝑐 = 𝑃𝑡 ∗ 𝐴 ∗ 𝐶

𝑉𝑡
inf 𝑖𝑛 = 𝑀𝑖𝑛{ 𝑉inf ,

𝑉𝑡 ‒ 1
inf 𝑓𝑖𝑚 + 𝑉𝑡

𝑎𝑐,}
𝑉𝑡

𝑐 = 𝑀𝑖𝑛{𝐷𝑡
𝑝𝑙𝑢𝑣,

𝑉𝑡
inf 𝑖𝑛,}

𝑉𝑡
inf 𝑓𝑖𝑚 = 𝑀𝑖𝑛{𝑉𝑡

inf 𝑖𝑛 ‒ 𝑉𝑡
𝑐,

𝑉inf . ‒ 𝑉𝑡
𝑐, }

Efficiency 𝐸(%) = 100 ∗
∑𝑉𝑡

𝑐

∑𝐷𝑡
𝑡𝑜𝑡

t: time interval (day)
Vt

ac: volume of water that runs through the catchment area at 
a given time t (L)
Pt: rainfall in the time interval t (mm)
A: catchment area (m2)
C: runoff coefficient
Vt

inf in: volume available in the tank at the beginning of the 
time interval t (L)
Vinf: storage tank volume (L)
Vt-1

inf fim: volume available at the end of the previous time 
interval t-1 (L)
Vt

c: volume of rainwater consumed in the time interval t (L)
Dt

pluv: rainwater demand for the time interval t (L)
Vt

inf fim: volume available at the end of the time interval t (L)
E: efficiency in potable water savings (%)

c) Rippl method

The Rippl algorithm calculates the volume of storage necessary to regulate the tank outputs 

allowing a constant supply to the system. The method calculates the water surplus required 

to be stored during the rainy season to compensate for the shortage in dry season (Tomaz, 

2005; Quadros, 2010). Tank volume was the maximum cumulative (positive) difference 



between rainwater needed and collected (Matos et al., 2013). Table 4 summarizes the 

analytical approach used by Sanches et al. (2015) for this method.

Table 4. Methods of continuous simulation of mass balance used for storage tank sizing - 

Rippl method.
Method Equation Variables

Rippl

𝑉𝑡 = 𝐶 ∗ 𝑃𝑡 ∗ 𝐴

{ 𝑆𝑡 = 0,   𝐶𝑡 ‒ 𝑉𝑡 ≤ 0
𝑆𝑡 = 𝐶𝑡 ‒ 𝑉𝑡,   𝐶𝑡 ‒ 𝑉𝑡 > 0   𝑡 = 1}

{ 𝑆𝑡 = 0,    𝑆𝑡 ‒ 1 + 𝐶𝑡 ‒ 𝑉𝑡 ≤ 0
𝑆𝑡 = 𝑆𝑡 ‒ 1 + 𝐶𝑡 ‒ 𝑉𝑡,    𝑆𝑡 ‒ 1 + 𝐶𝑡 ‒ 𝑉𝑡 > 0   𝑡 > 1}

𝑉𝑟 = 𝑀𝑎𝑥{𝑆𝑡},     1 ≤ 𝑡 ≤ 𝑛

t: time interval (day)
Vt: volume of rainwater collected (L)
A: catchment area (m2)
Pt: rainfall in the time interval (mm)
C: runoff coefficient
St: stored volume during the time interval t (L)
St-1: stored volume for the previous time 
interval t-1 (L)
Ct: rainwater consumption proposed for the 
time interval t (L)
n: total number of intervals considered
Vr: volume of response, associated with the 
size of the tank that should be installed (L)

3. Cost functions methods

One method that includes information on system costs was applied. The method is based on 

maximizing the return on investment on an annual scale from savings obtained by stopping 

using potable water from the conventional system (López-Patiño et al., 2011). A ratio of 

unamortized investment costs (asset value not taking into account depreciation) was built 

according to tank size and it was contrasted against a curve associated to financial savings 

due to stopping using water from the public mains water service. Table 5 describes two cost 

functions required for applying the method.

The amortized investment cost function was prepared considering the investment 

costs required for building a system for a defined tank size. To describe the function, we 

used a regression model that fits the investment-volume behaviour.

The drinking water saving curve was generated using the continuous simulation 

models YAS, YBS, θ and Neptune, because for each volume they provide the value of the 

associated efficiency. The efficiencies found by the continuous simulations were multiplied 



by the annual demand, according to the proposed uses, to obtain the amount of water 

supplied by the RWH system per year. Subsequently, using the unit price of drinking water 

set by the utility, money savings due to stop buying water from the utility were estimated. 

Table 5. Method with costs functions used for storage tank sizing
Function Equation Variables

Function of amortized 
costs

𝐶𝐼(𝑉) = 𝛼 ∗ 𝐶(𝑉)→

𝐶𝐼(𝑉) = ((1 + 𝑟)𝑁 ∗ 𝑟

(1 + 𝑟)𝑁 ‒ 1) ∗ 𝐶(𝑉)

Function of potable 
water savings costs

𝑊𝑆(𝑉) = 𝑃𝑤 ∗ 𝐷 ∗ 𝐸(𝑉)

α: amortization ratio
C(V): investment costs function without 
amortization (US$)
r: real interest rate (%)
N: amortization period (years)
V: tank volume (L)
Pw: unit price of water that includes supply, 
sanitation and discharge (US$/L)
D: annual demand of the sector (L)
E(V): efficiency as a function of volume

The cost-function method required to determine costs of the system elements. For this, 

market prices of storage tanks from a local company (Homecenter-Sodimac, Bucaramanga) 

were collected. With this information, an adjustment curve that describes the investment in 

the tank according to its volume was prepared (See Figure 3 in the main paper). Additional 

considerations were: 

- Drinking water unit price: 1.21 (US$ / m3) (local bills) (1 US$ = 2,859.17 COP)

- Real interest rate: 2% (López-Patiño et al., 2011)

- Amortization period (lifetime): 15 years (López-Patiño et al., 2011)

4. Statistical methods

This category comprised two methods: a) Nonparametric stochastic rainfall, and b) 

Probabilistic model. Both methods used the continuous mass balance equations YAS, YBS, 

θ and Neptune, since they allow assessing the performance for different tank sizes, but the 

methods enable a rainfall input provided by statistical methods.



a) Method based on a non-parametric stochastic rainfall generator:

The proposal by Basinger et al. (2010) was applied. This proposal described an algorithm 

for the generation of a stochastic rainfall based on nonparametric techniques. This method 

uses probabilities to describe rainfall occurrence. However, these are derived directly from 

local observations, which allowed generating a portable model that works for any historical 

precipitation period. The tool "Estimation of Storage and Reliability" (in its acronyms 

SARET) was used, which consists of a series of steps programmed in a spreadsheet in 

Visual Basic for Applications (VBA) (Table 6).

Table 6. Steps used by SARET for tank sizing from stochastic rainfall.
Paso Description

I Daily rainfall records for several years are required. Leap days should not be included.

II

Data should be sorted in a table in such a way that rows labels correspond to the days of a year, and 
columns labels for years. Mobile windows must be used. These windows are arrays that contain the 
information of the 15 previous records and the 14 after the target day through the years (i.e. if there are 25 
years available, then there will be 365 mobile windows of 30 days x 25 years size). To consider the 
mobile windows of the initial and final days of the year, the information of the adjacent years must be 
used (years of the extremes are considered contiguous).

III
Each daily record must be classified as wet (W) or dry (D), wet when rainfall was greater than zero, and 
dry when rainfall did not occur.

IV
For each mobile window, the number of events must be counted as follows: W (wet day), D (dry day), 
WW (wet day after a wet day), WD (dry day after a wet day), DD (dry day after a dry day) and DW (wet 
day after a dry day).

V

The first-order Markov chain model is completed for each of the 365 days. This is achieved by 
calculating the following probabilities:

𝑃𝑖(𝑊) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑊

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑊 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝐷
; 𝑃𝑖(𝐷) = 1 ‒ 𝑃𝑖(𝑊); 

𝑃𝑖(𝑊𝑊) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑊𝑊

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑊𝑊 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑊𝐷
; 𝑃𝑖(𝑊𝐷) = 1 ‒ 𝑃𝑖(𝑊𝑊); 

𝑃𝑖(𝐷𝐷) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝐷𝐷

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝐷𝐷 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝐷𝑊
 𝑎𝑛𝑑 𝑃𝑖(𝐷𝑊) = 1 ‒ 𝑃𝑖(𝐷𝐷).



VI

The creation of stochastic precipitation begins by assigning a dry day (D) or a wet day (W) for each of the 
days (i.e. for 25 years it would be 9125 days). The following criteria must be followed:

¿𝐵 > 𝑃1(𝑊)? {𝑌𝐸𝑆→𝐷𝑎𝑦1 = 𝐷
𝑁𝑂→𝐷𝑎𝑦1 = 𝑊}  ←𝐹𝑜𝑟𝑚𝑎𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦

¿𝐷𝑎𝑦𝑖 ‒ 1 = 𝑊? {𝑌𝐸𝑆→¿𝐵 > 𝑃𝑖(𝑊𝑊)? {𝑌𝐸𝑆→𝐷𝑎𝑦𝑖 = 𝐷
𝑁𝑂→𝐷𝑎𝑦𝑖 = 𝑊}

𝑁𝑂→¿𝐵 > 𝑃𝑖(𝐷𝐷)? {𝑌𝐸𝑆→𝐷𝑎𝑦𝑖 = 𝑊
𝑁𝑂→𝐷𝑎𝑦𝑖 = 𝐷 } }   ←𝐹𝑜𝑟𝑚𝑎𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒

𝑟𝑒𝑠𝑡 𝑜𝑓 𝑑𝑎𝑦𝑠

Where B corresponds to a random number between 0 and 1.

VII

If a day was defined as a dry day, zero precipitation will be assigned, but if a day was defined as a wet 
day, the k-th highest precipitation value of the data set should be chosen from the mobile window 
associated with the target day; that is to say, one of the 750 precipitations (i.e. for windows of 25 years) 
that actually happened is chosen. K-th value corresponds to an approximation to the lower integer of the 
calculated value as follows
𝑘 ‒ 𝑡ℎ = (𝑅𝑎𝑛𝑑𝑜𝑚 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1) ∗ (𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑊 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑏𝑖𝑙𝑒 𝑤𝑖𝑛𝑑𝑜𝑤) + 1

VIII
At least 100 stochastic simulations are applied under any mass balance method. From the 100 tank sizes, 
it is recommended to choose the largest volume conservatively

b) Method based on a probabilistic model:

Probabilistic relationships between tank capacity and supply deficit rates described by Su et 

al. (2009) were applied. For this, a procedure that consists of two steps was followed: a 

simulation model of mass balance and a probabilistic modelling.

In the continuous simulation model, water balance equations YAS, YBS, θ and 

Neptune were used, since they allowed to calculate annual deficits for different volumes. 

Deficit in the supply is described as a missing percentage of the efficiency to reach a total 

fulfilment of the demand (i.e. if for a tank volume efficiency is 60%, deficit corresponds to 

40%). As a result, two samples sizes were obtained from recorded years, that is 25 and 15 

for A and B respectively.

From the choice of a probability distribution that fits the data, the behaviour of the 

samples associated with each tank size was described. The concept of exceedance 

probability or return period was applied to study the critical events in which the deficit rates 

are exceeded. For this, the probability distributions were integrated to generate a graph that 

describes the deficits based on the tank size for a certain return period (Figure 1). The 

probabilistic behaviour of the random variables was described by using the normal 

distribution, as proposed by Su et al. (2009).
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Figure 1. Probabilistic method. (a) Probability density functions. (b) Deficit relations and 

storage volume according to exceedance probability.


