Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information:

Photodegradation of pharmaceutical compounds in partially nitritated wastewater during UV

irradiation

Priya I. Hora, Paige J. Novak, and William A. Arnold*

Department of Civil, Environmental, and Geo- Engineering, University of Minnesota – Twin

Cities, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States

*Corresponding author. Phone: 612-625-8582; Fax: 612-626-7750; email: arnol032@umn.edu

8 pages, 6 tables, and 1 figure

Compound	Therapeutic Class	Molecular Structure
Carbamazepine	Anticonvulsant	
Trimethoprim	Antibiotic	O O O N NH ₂
Fluoxetine Hydrochloride	Antidepressant	
Atenolol	beta-blocker	H H N N H ₂ N H ₂

Table S1: Target Pharmaceuticals Used in the Study

Water Quality Parameter	Method	Effluent ^a
Nitrite (NO ₂ ⁻ mg-N/L)	Metrohm ion chromatograph	0.0146
Nitrate (NO ₃ ⁻ mg-N/L)	Metrohm ion chromatograph	9.311
Ammonia (NH ₃ mg-N/L)	Hach colorimetric test kit	7
Dissolved organic carbon (DOC mg-C/L)	Shimadzu TOC-L analyzer	4.151
Dissolved inorganic carbon (DIC mg-C/L)	Shimadzu TOC-L analyzer	46.27
pH	Thermo Orion pH meter	7.5

 Table S2: Water quality parameters of the effluent used in photochemical study

^aBefore experiments, amended with NaNO₂ and (NH₄)₂SO₄ to achieve ~20 mg-N/L each of NO₂⁻ and NH₄⁺.

Figure S1: Molar absorptivity of pharmaceuticals, probe, and actinometer on a per wavelength basis (right y-axis); radiated energy in watts of mercury vapor lamp per lamp centerlines (left y-axis); absorption spectra of matrices (inset).

Analytical Methods:

Compound	Column ^a	Mobile Phase (v:v)	Injection V (µL)	Flow Rate (mL/min)	Detector λ (nm)
para-Cholorobenzoic acid	Eclipse XDB-C18 (4.6x150 mm, 3.5 μm)	45% Acetonitrile 55% Phosphate Buffer (10mM; pH3; 10% ACN)	40	1.0	238
Atenolol	Eclipse XDB-C18 (4.6x150 mm, 5.0 μm)	5% Acetonitrile 95% 0.1% (v/v) phosphoric acid	90	1.0	224
Carbamazepine	Eclipse XDB-C18 (4.6x150 mm, 3.5 μm)	65% Acetonitrile 35% Phosphate Buffer (10mM; pH3; 10% ACN)	50	1.0	290
Trimethoprim	Eclipse XDB-C18 (4.6x150 mm, 3.5 μm)	90% Acetonitrile 10% Phosphate Buffer (10mM; pH3; 10% ACN)	100	1.0	274
Fluoxetine	Eclipse XDB-C18 (4.6x150 mm, 3.5 μm)	65% Acetonitrile 35% Phosphate Buffer (10mM; pH3; 10% ACN)	40	1.0	230
Atrazine	Supelco Discovery RP- Amide C16 (15 cmx4.6 mm, 5 μm)	50% Acetonitrile 50% 0.1% (v/v) phosphoric acid	35	1.0	220

Table S3: RP-HPLC Methods for Pharmaceuticals, Probe, and Actinometer

^aColumns were at room temperature (~20 °C) except for atenolol (maintained at 30 °C)

Total N-Nitrosamine (TONO) Analysis

TONO analysis followed the method of Kulshrestha et al.¹ All samples were diluted to 200 mL (4-fold dilution) and quenched with 2 g/L of sulfamic acid overnight (to prevent nitrite interference) prior to solid phase extraction (SPE). Tandem SPE (activated carbon and Oasis HLB) was performed and the extracts combined and concentrated on a rotary evaporator and via N₂ blow down to concentrate the final samples to 1 mL in methanol. The limit of quantification (LOQ) for the original samples was 10 ng/L as nitrosodimethylamine (NDMA). A lab blank control and positive control were also performed for quality assurance. The final concentration is an average of two measurements and the standard deviations were calculated.

and experiments with synthetic matrix (isw) and amended efficient (ken) for $n = 200$ mm			
Compound	k _{dir} (min ⁻¹)	k _{sw} (min ⁻¹)	k _{eff} (min ⁻¹)
Carbamazepine	5.31±0.39x10 ⁻⁴	5.28±0.26x10 ⁻³	5.34±0.50x10 ⁻³
Trimethoprim	8.38±2.34x10 ⁻⁴	5.62±0.13x10 ⁻³	5.17±0.26x10 ⁻³
Fluoxetine	1.43±0.10x10 ⁻³	5.84±0.47x10 ⁻³	7.07±0.29x10 ⁻³
Atenolol	6.84±0.66x10 ⁻⁴	5.23±0.68x10 ⁻³	7.50±0.31x10 ⁻³
pCBA	2.01±0.18x10 ⁻⁴	2.75±0.08x10 ⁻³	2.81±0.09x10 ⁻³

Table S4a: Pseudo-first-order reaction rate constants for direct photolysis controls (kdir)
and experiments with synthetic matrix (k _{sw}) and amended effluent (k _{eff}) for $\lambda \ge 280$ nm ^a

^aErrors are 95% confidence intervals.

Table S4b: Pseudo-first-order reaction rate constants for direct photolysis controls (kdir)
and experiments with synthetic matrix (k_{sw}) and amended effluent (k_{eff}) $\lambda > 220$ nm ^a

Compound	k _{dir} (min ⁻¹)	ksw (min ⁻¹)	k _{eff} (min ⁻¹)
Carbamazepine	$1.08\pm0.02x10^{-2}$	$1.40\pm0.04x10^{-2}$	1.37±0.01x10 ⁻²
Trimethoprim	3.78±0.22x10 ⁻²	1.23±0.08x10 ⁻²	$1.20\pm0.10x10^{-2}$
Fluoxetine	N/A	N/A	N/A
Atenolol	$1.39\pm0.21 \times 10^{-2}$	1.10±0.23x10 ⁻²	1.93±0.03x10 ⁻²
рСВА	$4.72\pm0.14x10^{-2}$	$1.64\pm0.05 \text{x}10^{-2}$	$1.48\pm0.03x10^{-2}$

^aErrors are 95% confidence intervals.

Screening Factors:

Screening factors ($S_{i,j}$) were calculated following McCabe and Arnold and Karpuzcu, et al.^{2,3} as the ratio of light absorption rates (R_a) in pharmaceutical or probe (species *i*) solutions with and without screening species (*j*) present (i.e., comparing the rate of light absorption of compound in buffer versus effluent) over a range of wavelengths λ . The screening factors help to attribute differences in observed photolysis rates to: 1) physical screening due to absorption of light otherwise available for direct photolysis by the matrix; or, 2) other reduction or enhancement reactions.

$$R_{a,i} = \sum_{\lambda} \frac{W_{\lambda}(1 - 10^{-a_{i\lambda}z})}{z}$$
(1)

$$R_{a,i_{j}} = \sum_{\lambda} \frac{W_{\lambda}(1-10^{-(a_{i_{\lambda}}+a_{j_{\lambda}})^{z}})}{z} \frac{a_{i_{\lambda}}}{a_{i_{\lambda}}+a_{j_{\lambda}}}$$
(2)

$$S_{i_j} = \frac{R_{a,i_j}}{R_{a,i_j}}$$
(3)

Where W_{λ} (*mEi* $cm^{-2}s^{-1}$) is the spectral photon fluence rate derived from actinometry, $z = 1.12 \ cm^4$ is the effective light path length in the 13x100 mm quartz test tubes accounting for reflection and refraction, $a_{\lambda}(cm^{-1})$ is the light attenuation coefficient (measured absorbance in a quartz cuvette with path length 1 cm)). Values for S_{i_j} are between 0 and 1, with 0 indicating no light is absorbed by species *i* (i.e., all light absorbed by screening species *j*), and 1 indicating no light is screened by species *j*. Tabulated screening factors are presented below in Table S5.

Pseudo-first-order rate constants for direct photolysis in buffer in the $\lambda \ge 220$ nm experiments were corrected by multiplying by the respective S_{i_j} as illustrated in equation 4.

$$k'_{direct,corrected} = k'_{direct} \times S_{i_j}$$
(4)

Factors			
Compound	Si,j,nit	Si,j,eff	
Carbamazepine	0.735	0.625	
Trimethoprim	0.665	0.563	
Fluoxetine	0.480	0.405	
Atenolol	0.628	0.525	
pCBA	0.464	0.376	

Table S5: Light Screening Correction Factors

References

- P. Kulshrestha, K. C. McKinstry, B. O. Fernandez, M. Feelisch and W. A. Mitch, Application of an optimized total N -nitrosamine (TONO) assay to pools: Placing N nitrosodimethylamine (NDMA) determinations into perspective, *Environ. Sci. Technol.*, 2010, 44, 3369–3375.
- 2 M. E. Karpuzcu, A. J. McCabe and W. A. Arnold, Phototransformation of pesticides in prairie potholes: effect of dissolved organic matter in triplet-induced oxidation, *Environ. Sci. Process. Impacts*, 2016, **18**, 237–245.
- A. J. McCabe and W. A. Arnold, Reactivity of Triplet Excited States of Dissolved Natural Organic Matter in Stormflow from Mixed-Use Watersheds, *Environ. Sci. Technol.*, 2017, 51, 9718–9728.
- 4 A. Leifer, *The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice*, American Chemical Society, Washington, DC, 1988.