Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary Information 1 2 Role of Al-based coagulants on hybrid ozonation-coagulation 3 (HOC) process for WWTP effluent organic matter and ibuprofen 4 removal 5 6 Xin Jin¹, Yong Shi¹, Rui Hou¹, Weijie Zhang¹, Pengkang Jin^{1*}, Xiaochang Wang¹ 7 8¹ School of Environmental and Municipal Engineering, Xi'an University of 9 Architecture and Technology, Xi'an, Shaanxi Province, 710055, China 10 11 Corresponding author: Pengkang Jin 12 Phone: +86 13379217572 13 E-mail: pkjin@hotmail.com 14 15 16 17 Number of pages:7 Number of text:1 18 19 Number of figures:10 20 21 22 23 24 25 26

Fig. S1 DOC removal performance at different Al dosages at pH 8

Fig. S2 Formaldehyde formation at different tBuOH dosages

30

31

33 Text.S1. UV/H₂O₂ experiment procedures

³⁴ UV/H₂O₂ experiment was used to obtain $\sum k_i[S_i]$. UV/H₂O₂ was used to generate ³⁵ •OH, and this experiment was conducted in ultrapure water. Experimental details were ³⁶ modified based on previous work¹. A Low-pressure mercury lamp (254 nm, 40 W, ³⁷ Cnlight) positioned 5 cm above the water surface of the reactor (ϕ 5× 4 cm). The ³⁸ solution was adjusted to have concentrations of 12 mg/L [Al], 1 µM pCBA and 2 mM ³⁹ phosphate buffer (pH=8). 40 During the UV/H₂O₂ experiment, the rate of •OH generation can be calculated 41 from Eq. $(S1)^2$.

42
$$\mathbf{r}_{OH} = \Phi_{OH} I_0 f_{H_2 O_2} (1 - e^{-A})$$
 (S1)

Where $\Phi_{\bullet OH}$ is the quantum yield of $\bullet OH$ at 254 nm, and $\Phi_{\bullet OH}$ is 1.00 in the bulk 43 solution³. I_0 is the incident light intensity at 254 nm, and it was measured by an 44 illuminometer (ST-51X, SENTRY, Taiwan); A is the fraction of light absorbed by the 45 bulk solution, and is given by A = $2.303b(\epsilon_{H2O2}C_{H2O2}+\epsilon_{HO2}-C_{HO2}+\epsilon_{S}C_{S})$, where 46 ϵ_{H2O2} =17.9-19.6 M⁻¹ cm⁻¹, ϵ_{HO2} =220 M⁻¹ cm⁻¹, $\epsilon_S C_S$ is the absorbance of other 47 compounds in the water matrix at 254 nm, and b is the water path length. In this case, 48 AlCl₃•6H₂O had no UV adsorption at 254 nm. Parameter f_{H2O2} is the fraction of 49 absorbed light that is absorbed by H_2O_2 and HO_2 , and is given by 50 $f_{H2O2}=2.303b(\epsilon_{H2O2}C_{H2O2}+\epsilon_{HO2}C_{HO2})/A$. Based on Eq.(S1), •OH formation during 51 UV/H₂O₂ experiment can be obtained in both ultrapure water and WWTP effluent (Fig. 52 S5). 53

54

Fig. S3 Ozone depletion at pH 8 in the ozonation and HOC processes.

a: ultrapure water; b: WWTP effluent. tBuOH dosage: 10mM.

58

57

59

Fig. S4 pCBA decomposition at pH=8 in the ozonation and HOC processes.

62 63 a: ultrapure water; b: WWTP effluent

78 Fig. S8 \int [•OH]dt at different ozone dosages in the HOC process in the ultrapure water

81 Fig. S9 ∫[•OH]dt at different ozone dosages in the HOC process in WWTP effluent. a:

- 82 without $AlCl_3 \bullet 6H_2O$; b: with $AlCl_3 \bullet 6H_2O$

Fig. S10 The plots of $1/R_{ct}$ vs. (k_{SS}[S]) in ultrapure water without AlCl₃•6H₂O (P =

85

5E-4)

88

89 References

 Y. Liu, J. Jiang, J. Ma, Y. Yang, C. Luo, X. Huangfu, Z. Guo, Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes. *Water Res.*, 2015, 68, 750-758.
J. C. Crittenden, S. Hu, D. W. Hand, S. A. Green, A kinetic model for H₂O₂/UV

process in a completely mixed batch reactor. *Water Res.*, 1999, **33**, 2315-2328.

95 3. J. Baxendale, J. Wilson, The photolysis of hydrogen peroxide at high light

96 intensities. *Transactions of the Faraday Society*, 1957, **53**, 344-356.