Feasibility evaluation of the treatment and recycling of shale gas produced water: A case study of the first shale gas field in the Eastern Sichuan Basin, China

Zhaoji Zhang, * a, Yiling Zhuang, a, b Junjie Li, a, b Zejun Zhou c and Shaohua Chen * a

^a Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

^cSinopec Chongqing Fuling Shale Gas Exploration & Development Co.Ltd., Chongqing 408014, China.

E-mail: zjzhang@iue.ac.cn, shchen@iue.ac.cn

Supporting	data:	12	pages,	5	tables,	6	figures.
------------	-------	----	--------	---	---------	---	----------

Step	Trea	atment process	Parameters
1	Pretreatment	Coagulation	Dosing $Al_2(SO_4)_3$ with pH = 6.0
2	and combined advanced chemical	Modified Fenton oxidation ^a	$H_2O_2 = 10 \text{ mL/L}; \text{ FeSO}_4 \cdot 7H_2O$ = 0.5 and 2.5 g/L; pH = 3.2
3		NaClO oxidation	NaClO = 1 mL/L; pH = 7.0
4		Residual chlorine removal	Na ₂ SO ₃ dosing
5	Multi-media	Sand-artificial zeolite filtration	-
6	filtration	Activated carbon filtration	-
7	Desalination	RO	RO membrane material:GE1812; Pressure = 3.0–4.0 MPa; Pure water conductivity = 450–650 μS/cm

Table S1 Operational strategy and parameters for the laboratory-scale PW treatment

a. Modified Fenton oxidation was designed by dosing FeSO4 · 7H2O twice in an entire Fenton oxidation experiment.

Step	Treatment process		Parameters
1		Coagulation-softening	-
2	2 Pretreatment	NaClO oxidation	NaClO = 21 mL/L; pH = 10.0–
			11.0
3		O. H.O. oxidation	O_3 gas flow rate = 30 L/h;
5	5	03-11202 0x1dation	pH = 11.0
4 Adv	Advanced oxidation ^a	Electrochemical oxidation	DSA-type anode; Stainless
			steel cathode; Current = 0.77
			A; pH = 7.5
5		Lan ayahanga	D-301anion exchange resin;
	Advanced filtration	ion exchange	Filtration flow rate = 1.0 L/h
6			Granular activated carbon;
		Activated carbon mitration	Filtration flow rate = 1.0 L/h
7	Concentration	Evaporation concentration	-

Table S2 Operational strategy and parameters for recycling RO concentrate

a. Removal efficiencies of residual refractory organic matters in the pretreated RO concentrate by $\mathrm{O_3\text{-}H_2O_2}$

oxidation and DSA-type electrochemical oxidation techniques were compared.

Reactor volume (L)	Sequencing batch operational mode	HRT (h)	DO in Oxic stage (mg/L)	MLSS	Biofilm carriers
8.0	Feeding (0.25 h)/Anoxic (2 h)/Oxic (2 h)/Anoxic (2 h)/Oxic (1 h)/Setting (0.5 h)/Withdrawing (0.25 h)	8.0	4.5–6.5	3000–4000 mg/L	AnoxKaldnes K5 type; Fill ratio = 30%

Table S3 Operational strategy and parameters of MBBR system for the co-treatment of PW with

domestic wastewater

Table S4 Representative of identified molecules in the PW from the Eastern Sichuan

Formula	Compound name	CAS
$C_7H_5N_5O_3$	Pterin-6-carboxylic acid	948-60-7
$C_9H_{11}F_2NO_3$	Benzeneethanamine	152434-78-1
$C_2H_6N_2O_2$	Hydroxyacetic acid	3530-14-1
C ₁₀ H ₁₈ O ₂	8-Methyl-6-nonenoic acid	21382-25-2
$C_{21}H_{34}S_2$	cyclic ethylene mercaptole	2759-86-6
$C_{14}H_{25}F_{3}O_{2}$	2-Trifluoroacetoxydodecane	1894-68-4
$C_8H_{24}O_4Si_4$	Cyclotetrasiloxane	556-67-2
$C_{22}H_{45}Cl_3Si$	Docosyltrichlorosilane	7325-84-0
$C_{13}H_{28}$	5-ethyl-5-methyldecane	17312-74-2
C ₃₁ H ₅₆	Pentacosan-13-ylbenzene	6006-90-2
C ₁₁ H ₂₁ ClO	4-Chloro-3-n-hexyltetrahydropyran	66555-66-6
C ₁₂ H ₂₄ O	Z-2-Dodecenol	69064-36-4
$C_{10}H_9NO_2$	4-Methoxy-2(1H)-quinolone	27667-34-1
C ₁₇ H ₃₆	2,6,10-trimethyltetradecane	14905-56-7
C ₉ H ₁₆ BrNO	2-Piperidinone	195194-80-0
C ₂₀ H ₃₄ O	8,11,14-Eicosatrienoic acid	1783-84-2
C ₃₇ H ₇₆ O	1-Heptatriacotanol	105794-58-9
C ₁₆ H26O ₃	2-Dodecen-1-yl(-)succinic anhydride	19780-11-1
C ₁₆ H ₃₀ O	11-Hexadecyn-1-ol	65686-49-9
$C_{14}H_{24}O_2$	3-Tetradecanynoic acid	55182-76-8
C ₄₀ H ₅₆	πCarotene	7235-40-7
$C_{15}H_{28}O$	2-Pentadecyn-1-ol	2834-00-6
C ₁₅ H ₂₈ O	Z,Z-2,5-Pentadecadien-1-ol	139185-79-8
$C_{15}H_{24}O$	Butylated Hydroxytoluene	128-37-0
$C_{22}H_{38}O_2$	Cyclopropaneoctanoic acid	10152-71-3
$C_{12}H_{20}O_4$	trans-Traumatic acid	6402-36-4
$C_{15}H_{26}O_2$	Geranyl isovalerate	109-20-6
C ₁₆ H ₃₄ N ₂ O	16-Hexadecanoyl hydrazide	2619-88-7
$C_{16}H_{22}O_2$	1,1'-Butadiynylenedicyclohexanol	5768-10-5
C ₁₉ H ₃₂ O ₂	9-Octadecen-12-ynoic acid, methyl ester	56847-05-3
C ₁₈ H ₃₈ N ₂ O	Stearic acid hydrazide	4130-54-5
C ₁₆ H ₃₀ O	7-Hexadecenal, (Z)-	56797-40-1
$C_{10}H_{16}O_2$	2-Decanynoic acid	1851-90-7
C ₁₄ H ₂₄ O ₂	2-Myristynoic acid	67587-19-3

Basin by TD-GC-MS analysis

Items	Emission standard of pollutants for		Emission standard of pollutants for	
(mg·L ⁻¹ , except for dimensionless pH)	petroleum che	emistry industry	petroleum refining industry	
	(GB31571-2015)		(GB31571-2015)	
	Direct	Indirect	Direct	Indirect
	discharge ^a	discharge ^b	discharge	discharge
pН	6.0-9.0	-	6-9	-
TSS	70	-	70	-
COD _{cr}	60		<u>()</u>	
	100 °	-	60	-
BOD ₅	20	-	20	-
NH ₃ -H	8.0	-	8.0	-
TN	40	-	40	-
ТР	1.0	-	1.0	-
TOC	20		20	
	30 °	-	20	-
Petroleum-like	5.0	20	5.0	20
Sulfide 1.0		1.0	1.0	1.0
Fluoride	10	20	-	
Volatile phenol	0.5	0.5	0.3	0.5
Cu	0.5	0.5	-	-
Total cyanide	0.5	0.5	0.3	0.5

Table S5 Representative wastewater discharge standards of oil & gas industry in

China

a. Direct discharge : wastewater discharged to municipal WWTPs or sewage pipe network.

b. Indirect discharge : wastewater discharged to private industrial WWTPs.

c. Wastewater from acrylonitrile- acrylic fibres, caprolactam, epichlorohydrin,

2,6-di-tert-butyl-4-methylphenol, pure terephthalic acid, cresol, epoxide propane, and naphthalene production factories.

Fig. S1 Flow diagram of the laboratory-scale co-treatment of PW and domestic wastewater.

Fig. S2 Relationship of Cl⁻ and Br⁻ among PW wells in the shale gas field in the Eastern Sichuan

Basin.

Fig. S3 Acute toxicity tests of the raw PW samples among nine wells represented as the

luminescence inhibition rate (low-toxicity level: inhibition ratio <30%; mid-toxicity level: <30%

inhibition ratio \leq 80%; high-toxicity level: inhibition ratio >80%).

Fig. S4 Comparison among different advanced and chemical oxidation processes on the removal of COD_{cr} (A. Modified Fenton–NaClO oxidation; B. Activated potassium persulfate– NaClO oxidation; C. NaClO oxidation; D. Modified Fenton; E. Activated potassium persulfate; F. Fenton).

Fig. S5 First-order kinetic fitting curve of a modified artificial zeolite for ammonia adsorption in deionized water (a. Raw artificial zeolite; b. NaOH- and NaCl-modified artificial zeolite; c. HCl-

modified artificial zeolite).

Fig. S6 Ammonia removal rate of pretreated PW by a modified artificial zeolite (A: Sequential advanced oxidation pretreated PW; B. Filtration with a raw artificial zeolite; C. Filtration with a NaCl-modified artificial zeolite; D. Filtration with a NaOH-modified artificial zeolite).