Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Pyridine-grafted Cr-based metal organic frameworks for

adsorption and removal of Microcystin-LR from aqueous solution

Yu Wei,^a and Yan Xia^{*abcd}

^aResearch Center for Analytical Sciences, College of Chemistry, Nankai University,

Tianjin 300071, China

^bKey Laboratory of Biosensing and Molecular Recognition

^cState Key Laboratory of Medicinal Chemical Biology (Nankai University)

^dCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)

Text S1. Preparation of adsorbents

MIL-101(Cr) was synthesized according to the reported procedure.¹ 0.800 g of Cr(NO₃)₃•9H₂O, 0.332 g of terephthalic acid and 0.1 mL of HF were well mixed with 9.6 mL of ultrapure water. Then, the homogenous solution was poured into a Teflon lined steel autoclave. The autoclave was placed in a pre-heated oven at 220 °C for 8 h. After that, the resulting product of MIL-101(Cr) was isolated by centrifugation at 8000 rpm for 5 min and washed with DMF three times to eliminate the unreacted terephthalic acid. In order to exchange the DMF from the cavities of MIL-101(Cr), the obtained MIL-101(Cr) was washed with ethanol three times. Finally, the solid was dried at 150 °C for 12 h under vacuum and kept in a desiccator.

The synthesis of MIL-101(Cr)-Py was performed using the method described elsewhere.² In brief, MIL-101(Cr), pyridine, and anhydrous toluene were mixed together in the ratio of 1.0 g: 1.1 g: 150 mL, which were transferred into a 250 mL round-bottom flask and refluxed at 110 °C for 24 h. Then, the resulting solid was isolated via centrifugation and washed by dichloromethane and ethanol for several times to remove the unreacted pyridine, which was dried at 150 °C for 12 h under vacuum and kept in a desiccator.

Fig. S1 Zeta potential of MIL-101(Cr)-Py in water under various pH at 25 °C.

Fig. S2 Plots of pseudo-first-order kinetics for the adsorption of MC-LR at different

initial concentrations on MIL-101(Cr)-Py at 25 °C.

Fig. S3 Linearized Freundlich isotherms for MC-LR adsorption by MIL-101(Cr)-Py at

different temperatures.

Fig. S4 Adsorption isotherms for the adsorption of MC-LR on MIL-101(Cr) and MIL-

```
101(Cr)-Py at 25 °C.
```


Fig. S5 Plots of $\ln (q_e/C_e)$ vs. q_e at various temperatures for the adsorption of MC-LR

on MIL-101(Cr)-Py.

Fig. S6 Plot of $\ln K_0$ against 1/T for the adsorption of MC-LR on MIL-101(Cr)-Py.

Fig. S7 UV absorption spectra of terephthalic acid and MIL-101(Cr)-Py (A) and MC-

LR with terephthalic acid and MIL-101(Cr)-Py in aqueous solution (B).

Fig. S8 Plot of contact angle between water and MIL-101(Cr)-Py (A) and MIL-101(Cr)

(B).

adsorbent	elements contents(%)		
	C(%)	H(%)	N(%)
MIL-101(Cr)-Py	39.33	3.69	0
MIL-101(Cr)	44.77	1.16	3.68

Table S1. Elemental analysis of MIL-101(Cr) and MIL-101(Cr)-Py.

Table S2 Comparison of adsorption capacities of various adsorbents for MC-LR.

adsorbent	$Q_{ heta} (\mathrm{mg}\;\mathrm{g}^{-1})$	reference
MIL-101(Cr)-Py	409.8	this work
MIL-101(Cr)	256.4	this work
commercial activated carbon	1.482	3
Mesoporous carbon Grapheme oxide	1.700	3
Fe ₃ O ₄ @Al-B	161.3	4
Photonated mesoporous graphitic carbon	2.361	5
Mesoporous carbon	35.67	6

References

[1] Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surble S., Margiolaki I., *Science*, 2005, **309**, 2040.

[2] Yang F., Yang C.X., Yan X.P., Talanta, 2015, 137, 136.

[3] Pavagadhi S., Tang A.L.L., Sathishkumar M., Loh K.P., Water Res., 2013, 47, 4621.

[4] Lian L.L., Cao X.L., Wu Y.Q., Sun D.Z., Lou D.W., *Appl. Surf. Sci.*, 2014, 289, 245.

[5] Huang C.H., Zhang W.M., Yan Z.M., Gao J., Liu W., Tong P., Zhang L., *RSC Adv*.
2015, 5, 45368.

[6] Park J.A., Jung S.M., Yi I.G., Choi J.W., Kim S.B., Lee S.H., *Chemosphere*, 2017, 117, 15.