Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Modeling Effects of H₂S on Electron Competition among Nitrogen Oxides Reduction and N₂O Accumulation during Denitrification

Yuting Pan^{a,1}, Yiwen Liu^{b,1}, Dongbo Wang^{c,*}, Bing-Jie Ni^{b,*}

^a Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
^b Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
^c Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China

¹ Yuting Pan and Yiwen Liu contributed equally to the work.

*Corresponding authors:

Dr. Bing-Jie Ni, Tel.: +61 295147401; E-mail: bingjieni@gmail.com Dr. Dongbo Wang, Tel.: +86 7 31 88823967; E-mail: dongbowang@hnu.edu.cn

Variable	Description	Unit
S_{H2S}	H ₂ S concentration	(mg H ₂ S/L as H ₂ S)
S _{NO3}	Nitrate concentration	(mg N/L as NO_3^-)
S_{NO2}	Nitrite concentration	(mg N/L as NO_2^{-})
S_{N2O}	Nitrous oxide concentration	(mg N/L as N ₂ O)
S_{N2}	Nitrogen gas concentration	(mg N/L as N ₂)
S_S	COD concentration	(mg COD/L)
S_{Mred}	Reduced form of electron carrier concentration	(mmol Mred/(mmol biomass))
S _{Mox}	Oxidized form of electron carrier concentration	(mmol Mred/(mmol biomass))
Х	Active heterotrophic biomass concentration	(mg COD/L)

 Table S1. Model components

Paramete	er Definition	Value	Source
K _{NO2} ^{H2S}	H_2S inhibition constant for nitrite reduction, R3 (mg H_2S/L)	1.56±0.11	Estimated
K_{N2O}^{H2S}	H_2S inhibition constant for N_2O reduction, R4 (mg H_2S/L)	0.088 ± 0.009	Estimated
K _{NO3}	Affinity constant for nitrate-nitrogen (mg N/L)	0.252	(1)
K_{NO2}^{HB}	Affinity constant for nitrite-nitrogen (mg N/L)	0.0574	(1)
K_{N2O}^{HB}	Affinity constant for nitrous oxide-nitrogen (mg N/L)	0.07	(2)
K_S	Affinity constant for Ss (mg COD/L)	1.6	(1)
<i>r_{COD}, max</i>	Maximum carbon source oxidation rate (mg COD/ mg biomass COD *hour)	0.24	(2)
^r NO3, max	Maximum nitrate reduction rate (mg N/mg biomass COD *hour)	0.0277	(2)
^r NO2, max	Maximum nitrite reduction rate (mg N/mg biomass COD *hour)	0.0364	(2)
^r N2O, max	Maximum nitrous oxide reaction rate (mg N/mg biomass COD *hour)	0.283	(2)
K _{Mox}	Affinity constant for S _{Mox} , R1 mmol/(mmol biomass)	0.0001	(2)
$K_{Mred,1}$	Affinity constant for S _{Mred} , R2 mmol/(mmol biomass)	0.0046	(2)
K _{Mred,2}	Affinity constant for S _{Mred} , R3 mmol/(mmol biomass)	0.00040	(2)
K _{Mred,3}	Affinity constant for S _{Mred} , R5 mmol/(mmol biomass)	0.0032	(2)
Y_H	Heterotrophic yield	0.5	(3)
C _{tot}	Total electron carrier concentration mmol/mmol biomass	0.01	(2)

Table S2. Kinetic and stoichiometric parameters of the developed model

References

- Henze, M.; Gujer, W.; Mino, T.; van Loosdrecht, M. C. M. Activated sludge models ASM1, ASM2, ASM2d, and ASM3. In IWA Scientific and Technical Report No. 9; IWA Publishing: London, U.K., 2000.
- (2) Pan, Y., Ni, B. J., Lu, H., Chandran, K., Richardson, D., & Yuan, Z. Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment. Water research, 2015, 71, 21-31.
- (3) Pan, Y.; Ni, B.-J.; Yuan, Z., Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification. Environ. Sci. Technol. 2013, 47, (19), 11083-11091.