Electronic Supplementary Information

Capacitive Deionization Using Symmetric Carbon Electrode Pairs

X. Gao,^{a,*} A. Omosebi,^a Z. Ma,^{a,b} F. Zhu,^a J. Landon,^{a,*} M. Ghorbanian,^c N. Kern,^d and K. Liu ^{a,e,*}

^a: University of Kentucky Center for Applied Energy Research, Lexington, KY 40511, USA

^b: National Center for Coal Preparation and Purification Engineering Research, China Mining University of Technology, Jiangsu 221116, China

^c: Technology Research & Analysis, LG&E and KU Energy LLC, Louisville, KY 40202, USA

d: Emerging Technology Office, Duke Energy, Charlotte, NC 28202, USA

e: Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA

*: Xin.Gao1@uky.edu, James.Landon@uky.edu, and Kunlei.Liu@uky.edu

Figure S1. Profiles of (a)-(c) effluent concentration and (d)-(f) specific current at 0.8/0 V when a CDI cell was configured with electrode pairs A-C. It is noted that magnitude of the peak currents in (d)-(f) are very similar; therefore, conductivity/resistivity of the CDI cell configured with electrode pairs A-C is very similar.

Figure S2. Profiles of (a)-(c) dissolved oxygen and (d)-(f) effluent pH at 0.8/0 V when a CDI cell was configured with electrode pairs A-C. Even though solution was kept deaerating during all of the tests, reductions in a small amount of dissolved oxygen was still detectable during 0.8 V charging.

Figure S3. A CDI Ragone plot based upon the first adsorption half cycles in Fig. 5(a)-(c), suggesting a higher SAC and rate associated with electrode pair B in comparison of that for electrode pairs A and C.

Figure S4 Profiles of (a)-(c) effluent pH and open circuit voltage and (d)-(f) effluent concentration and dissolved oxygen when a CDI cell was configured with electrode pairs A-C before CDI tests (or during wetting the electrodes).