Supplementary information for

Nanoscale Electrochemical Movies and Synchronous Topographical Mapping of Electrocatalytic Materials

Cameron L. Bentley and Patrick R. Unwin

Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K. Email: <u>C.Bentley.1@warwick.ac.uk</u> (C.L.B.) and <u>P.R.Unwin@warwick.ac.uk</u> (P.R.U.)

Supplementary Movie Captions:

Movie S1. Spatially-resolved electrochemical movie (2500 pixels over a $2.5 \times 2.5 \,\mu\text{m}$ scan area, 400 pixels μm^{-2} , 384 image frames) obtained with the voltammetric hopping mode SECCM protocol, visualizing HER activity on a cleaved MoS₂ surface. The nanopipet probe (diameter, $d \approx 30 \,\text{nm}$) contained 100 mM HClO₄. Experimental parameters were as follows: voltammetric scan rate (v) = 10 V s⁻¹, total scan time (t_s) = 635 s (*ca.* 0.25 s per pixel), approach voltage (E_a) = -0.947 V, initial potential (E_i) = 0.053 V and final potential (E_f) = -0.947 V (all vs. RHE). The data presented are not interpolated.

Movie S2. Spatially-resolved electrochemical movie (2520 pixels over a $3.5 \times 1.8 \,\mu\text{m}$ scan area, 400 pixels μm^{-2} , 230 image frames) obtained with the voltammetric hopping mode SECCM protocol, visualizing ORR/HER activity on GC-supported AuNCs. The nanopipet probe ($d \approx 30 \,\text{nm}$) contained 100 mM H₂SO₄. Experimental parameters were as follows: $v = 10 \,\text{V s}^{-1}$, $t_s = 671 \,\text{s}$ (*ca.* 0.27 s per pixel), $E_a = -0.708 \,\text{V}$, $E_i = 0.142 \,\text{V}$ and $E_f = -0.458 \,\text{V}$ (all vs. RHE). The data presented are not interpolated.

Supplementary Figures:

Figure S1. A representative SEM image of the two-dimensional (2D) Au nanocrystals (AuNCs), supported on glassy carbon (GC). The AuNCs range in size from *ca*. 100 nm to >1 μ m.

Figure S2. (a) Topographical and **(b)** spatially-resolved electrochemical maps (2520 pixels over a $3.5 \times 1.8 \ \mu\text{m}$ scan area, 400 pixels μm^{-2}) obtained with the voltammetric hopping mode SECCM configuration, obtained on a GC support surface. The nanopipet probe ($d \approx 30 \ \text{nm}$) contained 100 mM H₂SO₄. The electrochemical map was obtained at -0.43 V vs. RHE. Experimental parameters are as follows: $v = 10 \text{ V s}^{-1}$, $t_d = 260 \ \mu\text{s}$, $t_s = 671 \ \text{s}$ (*ca.* 0.27 s per pixel), $E_a = -0.708 \ \text{V}$, $E_i = 0.142 \ \text{V}$ and $E_f = -0.458 \ \text{V}$ (all vs. RHE).

Figure S3. (a) Topographical and **(b)** spatially-resolved electrochemical maps (2520 pixels over a $3.5 \times 1.8 \ \mu\text{m}$ scan area, 400 pixels μm^{-2}) obtained with the voltammetric hopping mode SECCM configuration, visualizing ORR/HER activity on GC-supported AuNCs. The nanopipet probe ($d \approx 30 \ \text{nm}$) contained 100 mM H₂SO₄. The electrochemical map was obtained at $-0.43 \ \text{V}$ vs. RHE. **(c)** *z*-position and i_{surf} line scan profiles of the area indicated by the green and red dashed lines in **(a)** and **(b)**, respectively. 0 nm and 0 pA are the bottom-left and top-left corners of the plot, respectively. Experimental parameters are as follows: $v = 10 \ \text{V} \ \text{s}^{-1}$, $t_d = 260 \ \mu\text{s}$, $t_s = 671 \ \text{s}$ (*ca.* 0.27 s per pixel), $E_a = -0.708 \ \text{V}$, $E_i = 0.142 \ \text{V}$ and $E_f = -0.458 \ \text{V}$ (all vs. RHE). All *xy* scale bars indicate 500 nm. The data presented in **(a)** and **(b)** are not interpolated.

Figure S4. Average LSVs obtained on GC (black trace, N = 138, selected at random across the surface), AuNC-1 (orange trace, N = 68), AuNC-2 (red trace, N = 35), AuNC-3 (purple trace, N = 74) and AuNC-4 (green trace, N = 56), labelled in Figure 4c of the main text. Experimental parameters are as follows: Experimental parameters are as follows: v = 10 V s⁻¹, $t_d = 260$ µs, $E_i = 0.142$ V and $E_f = -0.458$ V (both vs. RHE).