Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Unique selectivity trends of highly permeable PAP[5] water channel membranes

Woochul Song¹, Yue-xiao Shen², Chao Lang¹, Prantik Saha³, Iryna V. Zenyuk⁴, Robert J. Hickey⁵ and Manish Kumar^{*1,6,7}

Department of Chemical Engineering, ⁵Department of Materials Science and Engineering, ⁶
 Department of Biomedical Engineering, ⁷ Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
 Department of Chemistry, University of California, Berkeley, CA, 94720 USA
 Department of Physics and Astronomy, ⁴Department of Mechanical Engineering, Tufts University, Medford, MA, 02155 USA

*To whom correspondence should be addressed. Tel.: (814)-865-7519; Email: manish.kumar@psu.edu

Debye length $(^{\lambda_D})$ calculation

The Debye length ($^{\lambda_D}$, nm) of various ionic solutions is calculated by the equation,

$$\lambda_D = \sqrt{\frac{\varepsilon_0 \varepsilon_r k_B T}{2N_A e^2 I}} \tag{1}$$

where $^{\varepsilon_0}$ and $^{\varepsilon_r}$ are vacuum and relative permittivity, k_B is the Boltzmann constant, T is the absolute temperature (K), N_A is the Avogadro's number, e is the elementary charge and I is the ionic strength (mol·L⁻¹) of the solution. The ionic strength of the solution is defined as

$$I = \frac{1}{2} \sum c_i z_i^2 \tag{2}$$

where c_i and d_i are molar concentration (M) and valence number of charged ions, respectively.² For the methyl blue dye rejection test, the ionic strength of the solutions was adjusted using NaCl.

Donnan rejection calculation

Theoretical Donnan rejections for various ionic solutes in **Figure 3A** were calculated by following equation.³

$$R = 1 - \left(\frac{|z_{i}|c_{i}}{|z_{i}|c_{i}^{m} + c_{x}^{m}}\right)^{|z_{i}/z_{j}|}$$
(3)

where c_i and c_i^m are co-ion (same charge ions with membrane) concentrations of feed solution and membrane, c_x^m is the charge concentration of the membrane, c_x^m and c_x^m is the ionic valence number. c_i^m is generally adapted as the co-ion concentration of the permeate solution. Solution is obtained by fitting the experimental rejection value of Ru(bipy)₃Cl₂ (91.56 %) into equation (3), as shown in following equation.

$$c_{x}^{m} = \frac{|z_{i}|c_{i}}{(1-R)^{|z_{j}/z_{i}|}} - |z_{i}|c_{i}^{m} = \frac{|z_{i}|c_{i}}{(1-R)^{|z_{j}/z_{i}|}} - |z_{i}|(c_{i} \times (1-R))$$

$$= 3.5 mM$$

Critical flux $(^{J_c})$ calculation

The critical flux of the ML-PAP[5] membrane is calculated by the equation, 4-6

$$J_c = \frac{\varepsilon k_B T}{\eta R_p^2} \tag{4}$$

where ε is the porosity of the ML-PAP[5] membrane, η is the viscosity of the solution and Rp is the pore radius of the membrane. For the ML-PAP[5] membrane, within a $1~\mu m \times 1~\mu m$ unit area, the actual channel number is $\sim 4.2 \times 10^5$ and the pore radius was adapted from the radius of confined pillar[5]arene of the PAP[5] channels (0.25 nm). Therefore, the ε is calculated as

$$\varepsilon = \frac{4.2 \times 10^5 \times \pi r^2}{1 \,\mu m \times 1 \,\mu m} = 0.0824$$

and the J_c is calculated as

$$J_c = \frac{0.0824 \times 1.38 \times 10^{-23} m^2 kg s^{-2} K^{-1} \times 293 K}{\left(0.25 \times 10^{-9} nm\right)^2 \times 0.001 kg m^{-1} s^{-1}} \times \frac{mol \, H_2 O}{0.000018 \, m^3} = \, 296,000 \, \frac{mol}{m^2 s}$$

References

- 1. F. Fornasiero, H. G. Park, J. K. Holt, M. Stadermann, C. P. Grigoropoulos, A. Noy and O. Bakajin, *Proceedings of the National Academy of Sciences*, 2008, **105**, 17250-17255.
- 2. T. Solomon, *Journal of Chemical Education*, 2001, **78**, 1691.
- 3. J. Schaep, B. Van der Bruggen, C. Vandecasteele and D. Wilms, *Separation and Purification Technology*, 1998, **14**, 155-162.
- 4. D. R. Latulippe and A. L. Zydney, *Journal of Membrane Science*, 2009, **329**, 201-208.
- 5. D. R. Latulippe, K. Ager and A. L. Zydney, *Journal of Membrane Science*, 2007, **294**, 169-177.
- 6. S. Daoudi and F. Brochard, *Macromolecules*, 1978, **11**, 751-758.
- 7. Y. X. Shen, W. Si, M. Erbakan, K. Decker, R. De Zorzi, P. O. Saboe, Y. J. Kang, S. Majd, P. J. Butler, T. Walz, A. Aksimentiev, J. L. Hou and M. Kumar, *Proc Natl Acad Sci U S A*, 2015, **112**, 9810-9815.