Stereochemistry-dependent Hydrogen Bonds Stabilise Stacked Conformations in Cyclic Dipeptides: (LD) vs. (LL) cyclo Tyrosine-Tyrosine.

Feriel BenNasr^{a)b)}, Ariel Pérez-Mellor^{a)}, Ivan Alata^{a)}, Valeria Lepere^{a)}, Nejm-Eddine Jaïdane^{b)}, Anne Zehnacker^{a)*}

a) Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France

b) Laboratoire de Spectroscopie Atomique, Moléculaire et Applications (LSAMA) Université de Tunis El Manar, LSAMA, Tunis 1060, Tunisia

* anne.zehnacker-rentien@u-psud.fr

	Electronic Energy ΔE	ZPE-corrected electronic Energy ΔE _{ZPE}	Gibbs Free Energy ∆G (kcal/mol)	Population (%)		Electronic Energy ΔЕ	ZPE-corrected electronic Energy ΔE _{ZPE}	Gibbs Free Energy ∆G (kcal/mol)	Population (%)
	(kcal/mol)	(kcal/mol)				(kcal/mol)	(kcal/mol)		
$c-g_{LII}^+g_{LI}^-$	1.6	1.2	0.0	20	$c-g_{LI}^+g_{DI}^-$	$0.0(2.0)^{*}$	0.0 (1.5)*	$0.0 (0.5)^{*}$	24
$c-g_{LII}^+g_{LII}^-$	1.8	1.3	0.1	16	$c-g_{LII}^+g_{DI}^-$	0.2	0.2	0.1	20
$c-g_{LI}^+g_{LII}^-$	1.7	1.3	0.3	13	$c-g_{LII}^+g_{DII}^-$	0.2	0.2	0.1	20
$c-g_{LI}^+g_{LI}^-$	1.8	1.3	0.3	12	$c-g_{LI}^+g_{DII}^-$	0.5	0.4	0.3	14
$c-g_{LI}^+g_{LI}^+$	0.6	0.3	0.2	15	$c-g_{LII}^+g_{DII}^+$	1.9	1.7	1.2	3
$c-g_{LI}^+g_{LII}^+$	0.0	0.0	0.6	7.0	$c-g_{LII}^+g_{DI}^+$	1.9	1.7	1.3	3
$c-g_{LII}^+g_{LI}^+$ (identical to	0.0	0.0	0.6	7.0	$c-g_{LI}^+g_{DI}^+$	2.1	1.9	1.4	2
$c-g_{LI}^+g_{LII}^+$)									
c-g ⁺ _{LII} g ⁺ _{LII}	1.2	0.9	0.7	6	c-g _{LI} g _{DII}	2.2	2.0	1.4	2
$c-g_{LI}^-g_{LI}^-$	5.1	4.4	1.8	1	$c-g_{LI}^-g_{DI}^-$	3.6	3.2	1.2	3
$c-g_{LII}^{-}g_{LI}^{-}$	5.3	4.5	1.9	1	$c-g_{LI}^{-}g_{DII}^{-}$	3.8	3.4	1.3	3
$c-g_{LI}g_{LII}$ (identical to	5.3	4.5	1.9	1	$c-g_{LII}^{-}g_{DI}^{-}$	3.7	3.3	1.3	3
$c-g_{LII}g_{LI})$	<i></i>	4.5	1.0			2.0	2.4		2
c-g _{LII} g _{LII}	5.4	4.5	1.9	1	c-g _{LII} g _{DII}	3.9	3.4	1.4	2
$c-g_{LI}^+ t_{LII}$	5.7	5.0	3.6	0	$c-t_{LI}g_{DII}^+$	1.7	1.8	2.1	1
$c-g_{LII}^+ t_{LI}$ (identical to	5.7	5.0	3.7	0	c-t _{LII} g ⁺ _{DII}	1.8	1.8	2.3	1
$c-g_{LI}^+ t_{LII})$									
$c-g_{LII}^+ t_{LII}$	5.7	5.0	3.7	0	$c-t_{LII}g_{DI}^+$	3.7	3.4	3.3	0
$c-g_{LI}^+ t_{LI}$	6.0	5.2	3.7	0	$c-t_{LI}g_{DI}^+$	3.7	3.4	3.4	0

Table S1: Energetic parameters of all stable calculated conformers calculated for c-LL (left) and c-LD (right), including the isomerism due to the torsion of the tyrosine hydroxyls.

$c-t_{LII}g_{LI}^{-}$	9.2	8.0	5.2	0	$c-t_{LI}g_{DI}$	7.1	6.6	4.4	0
$c-t_{LI}g_{LI}$	9.4	8.2	5.2	0	$c-t_{LI}g_{DII}^{-}$	7.3	6.7	4.5	0
$c-t_{LII}g_{LII}^{-}$	9.3	8.0	5.2	0	$c-t_{LII}g_{DI}^{-}$	6.9	6.3	4.6	0
$c-t_{LI}g_{LII}$	9.6	8.3	5.3	0	c-t _{LII} g _{DII}	7.0	6.4	4.6	0
$c-t_{LII}t_{LII}$	12.2	10.8	7.5	0	$c-t_{LI}t_{DII}$	10.0	9.1	7.2	0
$c-t_{LI}t_{LII}$	12.4	11.0	7.6	0	$c-t_{LII}t_{DII}$	9.9	9.0	7.2	0
$c-t_{LII}t_{LI}$ (identical to	12.4	11.0	7.8	0	c-t _{LI} t _{DI}	10.3	9.4	7.4	0
$c-t_{LI}t_{LII})$									
$c-t_{LI}t_{LI}$	12.6	11.1	7.9	0	$c-t_{LII}t_{DI}$	10.2	9.3	7.4	0

Figure S1: Simulated infrared spectra of c-g⁺_{LI}g⁺_{LI} obtained by convoluting the mode-selected anharmonic frequencies by a Lorentzian line shape (FWHM 3 cm⁻¹). Only the v(OH), v(NH), v(CO) and β (NH) have been included for the anharmonic calculations. The red and blue lines in the spectrum denote the overtones and combination bands of the v(CO) stretches, respectively (see text).

