Supplementary Information for: Effects of symmetry breaking on the translation-rotation eigenstates of $\mathrm{H}_{2}, \mathrm{HF}$, and $\mathrm{H}_{2} \mathrm{O}$ inside the fullerene $\mathrm{C}_{60}{ }^{\dagger}$

Zlatko Bačić, ${ }^{*}, \ddagger, \ddagger$ Vojtěch Vlček, " Daniel Neuhauser, " and Peter M. Felker*, ${ }^{*}$
\dagger Department of Chemistry, New York University, New York, New York 10003, USA
$\ddagger N Y U-E C N U$ Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
【Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
E-mail: zlatko.bacic@nyu.edu; felker@chem.ucla.edu

1 Hamiltonian Parameters

$1.1 \quad \mathrm{H}_{2} @ \mathrm{C}_{60}$

The kinetic energy operator for $\mathrm{H}_{2} @ \mathrm{C}_{60}$ was taken to be

$$
\begin{equation*}
\hat{T}=-\frac{\nabla^{2}}{2 M}+B \hat{j}^{2} \tag{1}
\end{equation*}
$$

where ∇^{2} is the Laplacian associated with \mathbf{R}, \hat{j}^{2} is the operator corresponding to the square of the rotational angular momentum of the H_{2}, M is the mass of the H_{2}, and B is the
rotational constant of the H_{2}. We used $M=2.0104 \mathrm{amu}, B=58.378 \mathrm{~cm}^{-1}$ for the $v=0$ manifold, and $B=54.83 \mathrm{~cm}^{-1}$ for the $v=1$ manifold.

The $V_{M-C_{60}}$ function for both the $v=0$ and the $v=1$ manifolds was taken to be a pairwise-additive Lennard-Jones one of the form

$$
\begin{equation*}
V_{H_{2}-C_{60}}=\sum_{i=1}^{3} \sum_{k=1}^{60} 4 w_{i} \epsilon\left[\left(\frac{\sigma}{r_{i k}}\right)^{12}-\left(\frac{\sigma}{r_{i k}}\right)^{6}\right] \tag{2}
\end{equation*}
$$

where i runs over three H_{2} sites, k runs over the 60 nuclear positions of the C atoms in the central cage, and $r_{i k}$ is the distance between site i and site k. For both manifolds the H_{2} site 1 was located at the center of the HH bond, and sites 2 and 3 were located at the H nuclei. For $v=0$ the HH bond distance was taken to be $0.74 \AA, w_{1}=6.7, w_{2}=w_{3}=1$, $\sigma=2.95 \AA$, and $\epsilon=3.07 \mathrm{~cm}^{-1} .{ }^{1}$ For $v=1$ the HH bond distance was taken to be 0.78132 $\AA, w_{1}=7.5, w_{2}=w_{3}=1, \sigma=2.95 \AA$, and $\epsilon=2.9886668 \mathrm{~cm}^{-1} .{ }^{2}$ The C_{60} geometry was taken to be that used in Felker, et al. ${ }^{3}$

As to $V_{\text {quad }}$, the $\mathrm{BF} \hat{z}$ axis was taken to be the internuclear axis, and the one nonzero BF quadrupole component for H_{2} was taken to be $Q_{0}^{\mathrm{BF}}=0.499$ au for both the $v=0$ and $v=1$ manifolds. This is the same value that was used in Felker, et al. ${ }^{3}$

1.2 $\mathrm{HF}^{(} \mathrm{C}_{60}$

The kinetic energy operator for $\mathrm{HF}_{6} \mathrm{C}_{60}$ was taken to have the same form as eqn (1) but with $M=20.006225 \mathrm{amu}$ and $B=18.523 \mathrm{~cm}^{-1}$. This value for B is the cage-modified one determined by Kalugina and Roy. ${ }^{4}$

The $V_{H F-C_{60}}$ function was taken directly from Kalugina and Roy. ${ }^{4}$ It is an expansion over bipolar spherical tensors dependent on the four angles (Θ, Φ, ω) with R-dependent expansion coefficients. It does not require any input as to the C_{60} geometry.

The $\mathrm{BF} \hat{z}$ axis was taken by Kalugina and Roy 5 to be the internuclear axis pointing from the H nucleus to the F nucleus. As such $\vec{\mu}=\mu \hat{z}$ is antiparallel to \hat{z} and μ is negative. We
take the magnitude of μ to be the screened value of -0.177 au from Krachmalnicoff, et al. ${ }^{6}$

$1.3 \quad \mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$

The kinetic energy operator for $\mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$ was taken to be

$$
\begin{equation*}
\hat{T}=-\frac{\nabla^{2}}{2 M}+B_{x} \hat{j}_{x}^{2}+B_{y} \hat{j}_{y}^{2}+B_{z} \hat{j}_{z}^{2} \tag{3}
\end{equation*}
$$

where ∇^{2} is the Laplacian associated with $\mathbf{R}, \hat{j}_{x}, \hat{j}_{y}$, and \hat{j}_{z} are the operators associated with the components of the rotational angular momentum of the $\mathrm{H}_{2} \mathrm{O}$ along the BF axes, which are take to be its principal inertial axes. We used $M=18.0105 \mathrm{amu}, B_{x}=27.877 \mathrm{~cm}^{-1}$, $B_{y}=9.285 \mathrm{~cm}^{-1}$, and $B_{z}=14.512 \mathrm{~cm}^{-1}$. This choice of the BF axes locates the bisector of the HOH bond angle to be along the $\mathrm{BF} \hat{z}$ axis.

The $V_{M-C_{60}}$ for $\mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$ was taken from Felker and $\mathrm{Baccićc}^{7}$ and is given by

$$
\begin{equation*}
V_{\mathrm{H}_{2} \mathrm{O}-C_{60}}=\sum_{i=1}^{3} \sum_{k=1}^{60} 4 \epsilon_{i}\left[\left(\frac{\sigma_{i}}{r_{i k}}\right)^{12}-\left(\frac{\sigma_{i}}{r_{i k}}\right)^{6}\right], \tag{4}
\end{equation*}
$$

where i runs over three $\mathrm{H}_{2} \mathrm{O}$ sites, k runs over the 60 nuclear positions of the C atoms in the central cage, $r_{i k}$ is the distance between site i and site $k, \sigma_{1}=3.372 \AA, \sigma_{2}=\sigma_{3}=2.640$ $\AA, \epsilon_{1}=36.34 \mathrm{~cm}^{-1}$, and $\epsilon_{2}=\epsilon_{3}=8.95384 \mathrm{~cm}^{-1}$. The three $\mathrm{H}_{2} \mathrm{O}$ sites are given in Table 2 of the ESI of Felker, et al. ${ }^{3}$ The C_{60} geometry was taken to be the same as that used for $\mathrm{H}_{2} @ \mathrm{C}_{60}$.

As to $V_{\text {quad }}$, since we take the $\mathrm{BF} \hat{z}$ axis to point from the c.m. of the water moiety toward the O nucleus along the HOH bond-angle bisector, then $\vec{\mu}=\mu \hat{z}$ is antiparallel to \hat{z}, and μ is negative. We used the screened dipole value, $\mu=-0.200 \mathrm{au}$, from Goh, et al. ${ }^{8}$ The BF quadrupole components of the $\mathrm{H}_{2} \mathrm{O}$ were taken to be the same as in Felker, et al.: ${ }^{3}$ $Q_{0}^{(\mathrm{BF})}=-0.09973 \mathrm{au}$ and $Q_{ \pm 2}^{(\mathrm{BF})}=1.53843 \mathrm{au}$.

2 Grid Parameters

As mentioned in Subsection 2.2 of the main body of the paper the TR state function, $|\psi\rangle$, employed in the Chebyshev filter diagonalization procedure was transformed to a grid representation to effect its multiplication by the potential-energy portion of \hat{H}. The general nature of the five-dimensional (5D) grid points used for $\mathrm{H}_{2} @ \mathrm{C}_{60}$ and for $\mathrm{HF} @ \mathrm{C}_{60}$, and the six-dimensional (6D) grid points used for $\mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$ are described in Section 2.5 of Felker, et al. ${ }^{3}$ Further specifics as to the grids used in this work follow.

For $\mathrm{M}=\mathrm{H}_{2}$ we used (i) 12 Gauss-associated-Laguerre quadrature points generated as per Felker and Bačić ${ }^{9}$ with $\beta=2.9888989$ au for the R coordinate, (ii) 10 Gauss-Legendre quadrature points for the $\cos \Theta$ coordinate, (iii) 18 Fourier grid points for the Φ coordinate, (iv) 10 Gauss-Legendre quadrature points for the $\cos \theta$ coordinate, and (v) 18 Fourier grid points for the ϕ coordinate. Here, the relevant Euler angles are $\omega=(\theta, \phi)$, where θ is the polar angle, and ϕ the azimuthal angle describing the orientation of the $\mathrm{BF} \hat{z}$ axis with respect to the SF axis system.

For $\mathrm{M}=\mathrm{HF}$ we used (i) 14 Gauss-associated-Laguerre quadrature points generated with $\beta=12.0$ au for the R coordinate, (ii) 12 Gauss-Legendre quadrature points for the $\cos \Theta$ coordinate, (iii) 24 Fourier grid points for the Φ coordinate, (iv) 10 Gauss-Legendre quadrature points for the $\cos \theta$ coordinate, and (v) 18 Fourier grid points for the ϕ coordinate.

For $\mathrm{M}=\mathrm{H}_{2} \mathrm{O}$ we used (i) 12 Gauss-associated-Laguerre quadrature points generated with $\beta=24.38$ au for the R coordinate, (ii) 10 Gauss-Legendre quadrature points for the $\cos \Theta$ coordinate, (iii) 18 Fourier grid points for the Φ coordinate, (iv) 10 Gauss-Legendre quadrature points for the $\cos \theta$ coordinate, (v) 18 Fourier grid points for the ϕ coordinate, and (vi) 18 Fourier grid points for the χ coordinate. Here, $\omega=(\phi, \theta, \chi)$ are the Euler angles, defined with the convention used in Zare, ${ }^{10}$ that specify the orientation of the BF axes of the $\mathrm{H}_{2} \mathrm{O}$ with respect to the SF axes.

References

(1) M. Xu, S. Ye, A. Powers, R. Lawler, N. J. Turro, and Z. Bačić , J. Chem. Phys., 2013, 139, 064309.
(2) M. Xu, F. Sebastianelli, B. R. Gibbons, Z. Bačić, R. Lawler and N. J. Turro , J. Chem. Phys., 2009, 130, 224306.
(3) P. M. Felker, V. Vlček, I. Hietanen, S. FitzGerald, D. Neuhauser and Z. Bačić, Phys. Chem. Chem. Phys., 2017, 19, 31274.
(4) Y. N. Kalugina and P. N. Roy, J. Chem. Phys., 2017, 147, 244303.
(5) P. N. Roy, private communication.
(6) A. Krachmalnicoff, R. Bounds, S. Mamone, S. Alom, M. Concistrè, B. Meier, K. Kouřil, M. E. Light, M. R. Johnson, S. Rols, A. J. Horsewill, A. Shugai, U. Nagel, T. Rõõm, M. Carravetta, M. Levitt and R. J. Whitby, Nature Chem., 2016, 8, 953.
(7) P. M. Felker and Z. Bačić, J. Chem. Phys., 2016, 144, 201101.
(8) K. S. K. Goh, M. Jimeńez-Ruiz, M. R. Johnson, S. Rols, J. Ollivier, M. S. Denning, S. Mamone, M. H. Levitt, X. Lei, Y. Li, N. J. Turro, Y. Murata and A. J. Horsewill, Phys. Chem. Chem. Phys., 2014, 16, 21330.
(9) See P. M. Felker and Z. Bačić, J. Chem. Phys., 2016, 145, 084310, Supplementary Material, Section II.
(10) R. N. Zare, Angular Momentum (Wiley, New York, 1988).

