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1. Correlation Energy Correction

The correction is based on the difference of bond dissociation energies (BDE) between 

low level (in this case FOMO-CASCI) and high-level method (we used CCSD(T)). 

For a molecule A-B, BDE can be obtained as energy differences between the energies 

of the fragments and the molecule

𝐵𝐷𝐸 = 𝐸𝐴 + 𝐸𝐵 ‒ 𝐸𝐴𝐵 . (1)

We add an empirical potential term into the FOMO-CASCI Hamiltonian that depends 

solely on the distance of the dissociating atom from the central atom. The empirical 

potential is tuned so that the FOMO-CASCI + CEC reproduces the experimental or 

high-level theory BDEs and is applied to both ground and all excited states. The 

potential is a switching function, for which we have chosen a simple polynomial

𝐸𝑐𝑜𝑟𝑟 = 𝑎(𝑟 ‒ 𝑟0)2 + 𝑏(𝑟 ‒ 𝑟0)4  . (2)

This function resembles the dissociation curve with a sigmoid-like shape. It is applied 

in finite interval , where it has a smooth first derivative and is constant outside 〈𝑟0;𝑟𝑑𝑖𝑠〉

of the interval. It follows that

𝐸𝑐𝑜𝑟𝑟 = { 0 ∀ 𝑟 ∈ 〈0;𝑟0〉
 𝑎(𝑟 ‒ 𝑟0)2 + 𝑏(𝑟 ‒ 𝑟0)4 ∀ 𝑟 ∈ 〈𝑟0;𝑟𝑑𝑖𝑠〉

∆𝐸  ∀ 𝑟 ∈ 〈𝑟𝑑𝑖𝑠;∞〉. � (3)

We obtained the empirical constants by calculating the dissociation curve at the 
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FOMO-CASCI level. Parameters  and  are chosen arbitrarily but the latter 𝑟0 𝑟𝑑𝑖𝑠𝑜𝑐

should correspond to a geometry where the dissociation is essentially completed. The 

empirical constants a and b are obtained via the following conditions:

1. The potential at rdis must equal to the difference between the experimental (or high-

level theory) and theoretically computed bond dissociation energies ΔE:

𝐸𝑐𝑜𝑟𝑟(𝑟𝑑𝑖𝑠) = Δ𝐸 (4)

2. The potential has zero first derivative at r = rdis:

𝑑𝐸𝑐𝑜𝑟𝑟(𝑟𝑑𝑖𝑠)

𝑑𝑟
= 0 = 2𝑎(𝑟 ‒ 𝑟0) + 4𝑏(𝑟 ‒ 𝑟0)3 (5)

Note that the corresponding conditions for the other side of the potential (i.e., for r = 

r0) are fulfilled by construction. For our simulations of the CF2Cl2 molecule, the 

energy difference  was set as a difference between the CCSD(T) and FOMO-∆𝐸

CASCI values for dissociation energy, 1.13 eV. Other parameters are: , 𝑟0 = 1.9 Å

, , .𝑟𝑑𝑖𝑠 = 3.4 Å 𝑎 = 10.3366 ∙ 10 ‒ 3 𝑒𝑉 ∙ Å ‒ 2  𝑏 = 6.4323 ∙ 10 ‒ 4𝑒𝑉 ∙ Å ‒ 4

2. Experimental spectrum of the CF2Cl2 together with reflection principle estimate 

of the spectrum based on reflection principle with QT based density. 

Figure S1. The distribution of the excitation energies of the CF2Cl2 molecule along the ground state 

GLE trajectory at the B3LYP/6-31+g* level. We also show the experimental UV absorption spectrum 

cross section with temperature dependence.
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3. Potential energy scan for CF2Cl2 molecule. 

Figure S2. The first 9 singlet state energy curves for one Cl atom dissociation. The rigid scan along the 

C-Cl bond was performed at the FOMO-CASCI[12/8] 6-31+g*.

4. Distribution of chlorine velocities along C-Cl bond.

The CF2Cl2 dissociation takes place on a steep potential energy surface and we do not 

need worry too much of the proper sampling of the momenta in the present case. Still, 

there are some interesting issues. In the one dimensional case, the molecular dynamics 

with Lagrange multipliers should impose a condition of zero initial velocity. This is 

not entirely consistent with the sampling based on the filtering of the Wigner function 

according to equation (22). It is therefore interesting to look at the distribution of the 

relative velocities along the C-Cl bond in the multidimensional case. Figure S3 shows 

such a comparison for the points generated by the filtering of the Wigner function 

against the data obtained from the molecular dynamics with Lagrange multiplier 

constraint. We observe that the two sets of data are rather similar.
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Figure S3. Distribution of Cl velocities projected onto C-Cl bonds derived from either (i) unconstrained 

MD simulations for selected points fulfilling the resonance condition (MD filtering), or (ii) for MD 

simulation with Lagrange multipliers (LM).  

5. GLE input matrices adaptation

In order to damp the high artificial frequencies coming from the numerical noise from 

Lagrange multipliers, we had to adapt the GLE input matrices for quantum thermostat. 

In Generalized Langevin Equation1, two additional forces are acting on a particle: 

random forces and drift forces. Technically, the drift matrix  is written in a formΓ

Γ =  (𝛾𝑝𝑝 𝛾 𝑇
𝑝𝑠

𝛾𝑠𝑝 Γ𝑠𝑠),

coupling set of auxiliary momenta, s, to a system momentum, p. This matrix 

corresponds to a memory kernel2

𝐾(𝑡) = 2𝛾𝑝𝑝𝛿(𝑡) - 𝛾 𝑇
𝑝𝑠𝑒

‒ |𝑡|𝛾𝑠𝑠𝛾𝑠𝑝

Fourier transformation of this kernel  shows the effect of the drift matrix on 𝐾(𝜔)

different normal modes in the system. We can additively expand this kernel by so 

called -like memory kernels defined by matrix form3𝛿

Γ𝛿 =  ( 0
𝛾

2𝜋
𝛾

2𝜋

-
𝛾

2𝜋
∆𝜔 𝜔0

-
𝛾

2𝜋
- 𝜔0 ∆𝜔

)
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,  and  are input parameters, set so that the GLE thermostat acts only in desired 𝛾 ∆𝜔 𝜔0

range of frequencies, peaking at , having width of  and strength . This matrix 𝜔0 ∆𝜔 𝛾

itself corresponds to kernel , which for small 
𝐾(𝜔) = 2𝛾

∆𝜔 + 𝜔0
2 + 𝜔2

(𝜔 + 𝜔0
2) + ∆𝜔2

1
𝜋

∆𝜔

(𝜔 - 𝜔0
2) + ∆𝜔2

 corresponds to -like shape: . Let us imagine that we already ∆𝜔 𝛿
𝐾(𝜔) ≈ 𝛾

∆𝜔

(𝜔 ‒ 𝜔0
2) + ∆𝜔2

have a matrix, which we need to combine with . We construct a new matrix in Γ Γ𝛿

following way

Γ𝑒𝑥 =  ( 𝛾𝑝𝑝 𝛾 𝑇
𝑝𝑠

𝛾
2𝜋

𝛾
2𝜋

𝛾𝑠𝑝 Γ𝑠𝑠 0 0

-
𝛾

2𝜋
0 ∆𝜔 𝜔0

-
𝛾

2𝜋
0 - 𝜔0 ∆𝜔

)
One can verify that this will not affect the original kernel in any way except additional 

term in form of the delta thermostat. We can do this multiple times, always setting the 

cross elements to zero. Also we expand the second input (covariance) matrix, 

responsible for random forces acting on the particle, with zero values. This implies 

that only drift will be applied to the target region of frequencies, effectively setting 

their temperature to 0 K. In our work, we damped the region of 20 000–50 000 cm-1, 

which we achieved by combining three kernels centered at three different frequencies 

 30000 cm-1, 50000 cm-1 and 80000 cm-1 with cm-1 and 1/γ = 0.001 a.u.𝜔0 = ∆𝜔 = 5000 
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