Electronic Supplementary Information (ESI) for:

Bio-inspired Protonic Memristor Devices Based on Metal Complexes with Proton-Coupled Electron Transfer

Yusuke Hiruma, Kai Yoshikawa and Masa-aki Haga*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University 1-12-27 Kasuga, Bunkyo-ku, Tokyo, Japan.

E-mail: mhaga@kc.chuo-u.ac.jp

List of Electronic Supporting Information (ESI)

- 1. Proton electron transfer equilibria in the Ru complex RuNH-OH
- 2. AFM images for the ITO surface with RCA treatment and the ITO modified by 5 layered **RuNH-OH** LbL film
- 3. Summary of contact angle measurements
- 4. *I-V* plots for various combination of two-terminal devices.

1. Proton electron transfer equilibria in the Ru complex RuNH-OH

Scheme S1. Proton electron transfer equilibria in the Ru complex **RuNH-OH.** (Reprinted with permission from ref. 36. Copyright 2018 American Chemical Society)

2. AFM images for the ITO surface with RCA treatment and the ITO modified by 5 layered RuNH-OH LbL film

Figure S1. AFM image for the ITO surface after RCA treatment (5 \times 5 μ m)

Figure S2. AFM image for the ITO surface modified by 5 layered RuNH LbL complexes (5×5 μm and

 $1 \times 1 \ \mu m \ scale$)

3. Summary of contact angle measurements

Table.S1. Summary of contact angle measurements for bare ITO and the modified ITO electrodes of ITO|(RuLbL film) and ITO|(RuLbL film)/P4VP at room temperature and their photographs

ΙΤΟ	Bare (RCA treatment)	ITO (RuCH-OH) ₃	ITO (RuNH-OH) ₃	ITO (RuCH-OH) ₃ /P4VP	ITO (RuNH-OH) ₃ /P4VP
C. A. [deg.]	40.7±1.2	78.4±2.9	75.5 <u>+</u> 2.0	65.2 <u>+</u> 0.7	66.1 <u>±</u> 0.6
	-		6		

Figure S3. *I-V* plots of ITO|(RuNH-OH)₃/(RuCH-OH)₃|ITO without P4VP polymer layer

Figure S4. *I-V* plots of ITO|(**RuCH-OH**)₃/(**RuNH-OH**)₃|PEDOT without P4VP polymer layer

Figure S5. I-V plots of ITO|(RuNMe-OH)₃/P4VP/(RuCMe-OH)₃|ITO

Figure S6. I-V plots of ITO|(RuCH-OH)₃/P4VP|ITO

Figure S7. *I-V* plots of ITO|(**RuNH-OH**)₃/P4VP|ITO

Figure S8. Semi-log *I-V* plots of $ITO|(RuNH-OH)_3/P4VP/(RuCH-OH)_3|ITO$ for the average of 10 different devices as shown in Fig. 8 in the manuscript.