Supporting Information: Slow electron velocity-map imaging of Al₂O₂ and Al₃O₃

Jessalyn A. DeVine, Mark C. Babin, Daniel M. Neumark*

Department of Chemistry, University of California, Berkeley, California 94720, United States and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

*Correspondence to: <u>dneumark@berkeley.edu</u>

Figure S1. Peak areas of features a-d in the cryo-SEVI spectrum of $Al_2O_2^-$ normalized to the area of peak S1 as a function of (a) photon energy and (b) eKE.

Figure S2. Results of the application of the code of Liu and Ning¹ to detachment from the HOMOs of the two different isomers of $Al_3O_3^-$. (a) Calculated anisotropy parameters for low-eKE detachment from the book and kite anion HOMOs are shown as solid red and black lines, respectively, and compared to the experimental PADs for the 0_0^0 transition attributed to each (A1 and B1 for kite and book, respectively). (b) Calculated total detachment cross sections for the book (red) and kite (black) anion isomers. The dashed vertical lines show the eKEs of peaks A1 and B1 (black and red, respectively) at the photon energy used to acquire the green trace in Figure 6.

Figure S3. Three cryo-SEVI scans of $Al_3O_3^{-1}$ focusing on the higher-eBE region of the photoelectron spectrum. The eKEs and peak widths for the vibrational origin in the two lower-energy scans are provided, demonstrating that decreasing the photon energy does not result in narrower features.

Figure S4. Vibrational modes of Al_2O_2 , as well as their symmetries within the D_{2h} point group.

Figure S5. Vibrational frequencies of the neutral Al₃O₃ **3a** (left) and **3b** (right) isomers invoked in the vibrational assignments of the Al₃O₃⁻ cryo-SEVI spectrum. All modes have a_1 symmetry within the $C_{2\nu}$ point group.

Figure S6. The top panel shows the intrinsic reaction coordinate path calculated for the book/kite isomerization of neutral Al_3O_3 . The transition state geometry is pictured, as are several intermediate geometries. The dashed lines show the (non-ZPE corrected) energies of neutral isomers **3a** and **3b** relative to the transition state. The bottom panel shows the density of **3a** vibrational states using the same energy scale. Vertical lines are used to indicate the energies of the neutral **3b** isomer and the transition state.

Table S1. Cartesian coordinates (in Å) and relative energies (in eV) for the anion and neutral states of Al_2O_2 involved in this work calculated at the B3LYP/aug-cc-pVTZ level. Energies are relative to the anion ground state and are zero-point corrected.

$\tilde{X}^{2}B_{3u}$ (2a anion, D_{2h}) E = 0.000							
Al	1.246489	0.00000	0.00000				
0	0.00000	1.276998	0.00000				
0	0.00000	-1.276998	0.000000				
Al	-1.246489	0.00000	0.00000				
$ ilde{X}^{-1}A_{_g}$	$(2a \text{ neutral}, D_{2h})$		E = 2.189				
Al	1.213801	0.00000	0.00000				
0	0.00000	1.273649	0.00000				
0	0.00000	-1.273649	0.00000				
Al	-1.213801	0.00000	0.00000				
$\tilde{a}^{3}B_{3u}$ (2a neutral, D_{2h}) E = 2.447							
Al	1.211351	0.00000	0.00000				
0	0.00000	1.279760	0.00000				
0	0.00000	-1.279760	0.000000				
Al	-1.211351	0.00000	0.00000				

Table S2. Cartesian coordinates (in Å) and relative energies (in eV) for the lowest-energy anion and neutral states of the book and kite isomers of Al_3O_3 , calculated at the B3LYP/aug-cc-pVTZ level. Energies are relative to the lowest-energy anion state and are zero-point corrected.

$\tilde{X}^{-1}A_{_{1}}$	$(3a \text{ anion}, C_{2v})$	E = 0.000	
Al	0.00000	0.00000	-0.122474
Al	0.00000	0.00000	-2.600977
0	0.00000	1.285031	-1.258241
0	0.00000	-1.285031	-1.258241
0	0.00000	0.00000	1.602762
Al	0.00000	0.00000	3.285740
$\tilde{X}^{-1}A$	(3h anion Ca)		E = 0.005

Λ	A_1 (SD alloll, $C_{2\nu}$)		E = 0.003
Al	0.00000	0.00000	0.868074
Al	0.00000	1.930638	-0.798390
Al	0.00000	-1.930638	-0.798390
0	0.00000	1.684254	1.051909
0	0.00000	0.00000	-0.919668
0	0.00000	-1.684254	1.051909

$ ilde{X}^{-2}A_{_{ m I}}$	(3a neutral, $C_{2\nu}$)		E = 2.078
Al	0.00000	0.00000	-0.110949
Al	0.00000	0.00000	-2.524745
0	0.00000	1.272736	-1.312032
0	0.00000	-1.272736	-1.312032
0	0.00000	0.00000	1.570316
Al	0.00000	0.00000	3.284154

$ ilde{X}^{2}$	B_2 (3b neutral, $C_{2\nu}$)		E = 2.584
Al	0.00000	0.00000	0.916806
Al	0.00000	1.866137	-0.786967
Al	0.00000	-1.866137	-0.786967
0	0.00000	1.693535	1.004235
0	0.00000	0.00000	-0.940637
0	0.00000	-1.693535	1.004235

		3 a		3	3b
		$ ilde{X}^{-1}A_1$	$ ilde{X}^{-2}A_{1}$	$ ilde{X}^{-1}A_1$	$ ilde{X}^{-2}B_2$
v_1	a_1	1051	1073	739	726
v_2	a_1	843	802	682	644
<i>V</i> 3	a_1	594	746	540	573
v_4	a_1	544	586	414	432
v_5	a_1	325	343	208	246
v_6	b_1	335	360	163	174
v_7	b_1	151	175	329	331
v_8	b_1	57	64	107	102
V9	b_2	819	765	994	979
v_{10}	b_2	491	640	578	577
<i>v</i> ₁₁	b_2	234	240	461	561
v_{12}	b_2	50	57	361	307

Table S3. B3LYP/aug-cc-pVTZ harmonic frequencies (in cm⁻¹) for the anionic and neutral states of both isomers of Al₃O₃. The symmetries of each mode within the $C_{2\nu}$ point group are also provided.

Table S4. Results of the TDDFT calculation performed on the ${}^{3}B_{3u}$ electronic state of the Al₂O₂ neutral cluster, calculated at the B3LYP/aug-cc-pVTZ level. For each of the three states, the excitation energy (in eV, relative to the closed-shell singlet) and orbital occupation are provided. The excitation energies (in eV) calculated at the MRMP2 level by Sarker and coworkers² are also provided for comparison.

State	Orbital Occupation	TDDFT	MRMP2 ²
${}^{3}B_{1g}$	$\dots (2b_{1u})^2 (4b_{2u})^1 (1b_{3g})^2 (7a_g)^2 (5b_{3u})^1$	2.64	3.72
$^{3}A_{u}$	$\dots (2b_{1u})^2 (4b_{2u})^2 (1b_{3g})^1 (7a_g)^2 (5b_{3u})^1$	2.71	2.78
${}^{3}B_{2g}$	$\dots (2b_{1u})^1 (4b_{2u})^2 (1b_{3g})^2 (7a_g)^2 (5b_{3u})^1$	3.62	2.09

Isomer	eKE (eV)	f_0	f_1	f_2	f_3	f_4	f_5
3 a	0.001	0.868	0.128	0.003	0.000	0.000	0.000
3b	0.001	0.993	0.005	0.001	0.000	0.000	0.000
3 a	0.633	0.009	0.750	0.105	0.070	0.046	0.020
3b	0.633	0.448	0.074	0.434	0.023	0.020	0.001
3 a	2.001	0.062	0.691	0.055	0.073	0.056	0.063
3b	2.001	0.099	0.073	0.658	0.060	0.101	0.007

Table S5. Partial wave analysis extracted from the PAD calculations for the $Al_3O_3^-$ anion HOMOs. The fractional character f_l represents the fraction of the outgoing electron with angular momentum l, and is calculated as described in previous work.³ For each eKE, the dominant contributions are shown in bold.

References

¹Y. Liu and C. Ning. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory. *J. Chem. Phys.* **143**, 144310 (2015). ²M. I. M. Sarker, C.-S. Kim, and C. H. Choi. Ground and excited states of Al₂O₂ and its anion. *Chem. Phys. Lett.* **411**, 297 (2005).

³J. A. DeVine, M. L. Weichman, M. C. Babin, and D. M. Neumark. Slow photoelectron velocity-map imaging of cold tert-butyl peroxide. *J. Chem. Phys.* **147**, 013915 (2017).